Abstract

We propose what we believe to be a new method of high-resolution spectroscopy based on a single-sideband (SSB) optical modulator combined with an optical frequency comb. A spectral resolution of less than 1 MHz on the absolute frequency axis was ensured using the SSB optical modulator and a frequency-locked laser diode. Also, the measurement frequency range was expanded by installing an optical frequency comb into the light source, in which the peak intensity was individually measured by the optical heterodyne detection method. The performance was experimentally confirmed using a 1 MHz width resonator and a H13C14N gas cell. As a result, the measurement frequency range achieved was over 3 THz (1530–1560 nm) with a spectral resolution of less than 1 MHz.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sasada and K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
    [CrossRef] [PubMed]
  2. S. Kinugawa and H. Sasada, “Wavenumber measurement of the 1.5-μm band of acetylene by semiconductor laser spectrometer,” Jpn. J. Appl. Phys., Part 1 29, 611–612 (1990).
    [CrossRef]
  3. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
    [CrossRef]
  4. G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
    [CrossRef]
  5. P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
    [CrossRef]
  6. A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
    [CrossRef]
  7. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. B 13, 2708–2714 (1996).
    [CrossRef]
  8. H. S. Moon, W.-K. Lee, and H.-S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
    [CrossRef]
  9. J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, “Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb,” J. Opt. Soc. Am. B 24, 2727–2735 (2007).
    [CrossRef]
  10. J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515–520 (2002).
    [PubMed]
  11. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30, 2323–2325 (2005).
    [CrossRef] [PubMed]
  12. K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
    [CrossRef]
  13. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
    [CrossRef]
  14. T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
    [CrossRef]
  15. T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
    [CrossRef]
  16. T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
    [CrossRef]
  17. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [CrossRef] [PubMed]
  18. M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6, 214–217 (1994).
    [CrossRef]
  19. M. S. Taubman and J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25, 311–313 (2000).
    [CrossRef]
  20. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
    [CrossRef]

2009 (2)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
[CrossRef]

2008 (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

2007 (3)

T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
[CrossRef]

H. S. Moon, W.-K. Lee, and H.-S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, “Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb,” J. Opt. Soc. Am. B 24, 2727–2735 (2007).
[CrossRef]

2005 (2)

2002 (1)

2000 (2)

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

M. S. Taubman and J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25, 311–313 (2000).
[CrossRef]

1998 (1)

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

1996 (1)

1995 (1)

P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

1994 (1)

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6, 214–217 (1994).
[CrossRef]

1991 (1)

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

1990 (2)

H. Sasada and K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
[CrossRef] [PubMed]

S. Kinugawa and H. Sasada, “Wavenumber measurement of the 1.5-μm band of acetylene by semiconductor laser spectrometer,” Jpn. J. Appl. Phys., Part 1 29, 611–612 (1990).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Awaji, Y.

Barwood, G. P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

Bernard, J. E.

Bitou, Y.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Czajkowski, A.

de Labachelerie, M.

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Drissler, S.

Eickhoff, M.

P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Enami, T.

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6, 214–217 (1994).
[CrossRef]

Gilbert, S. L.

Gill, P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Hall, J. L.

Harada, S.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Hong, F. -L.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30, 2323–2325 (2005).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Ikegami, T.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Inaba, H.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30, 2323–2325 (2005).
[CrossRef] [PubMed]

Ito, F.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

Jiang, J.

Jones, D. J.

Jost, J. D.

Jun, Y.

P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Jungner, P. A.

P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Kinugawa, S.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

S. Kinugawa and H. Sasada, “Wavenumber measurement of the 1.5-μm band of acetylene by semiconductor laser spectrometer,” Jpn. J. Appl. Phys., Part 1 29, 611–612 (1990).
[CrossRef]

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Kourogi, M.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. B 13, 2708–2714 (1996).
[CrossRef]

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6, 214–217 (1994).
[CrossRef]

Kurokawa, T.

T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
[CrossRef]

T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
[CrossRef]

Lee, W. -K.

H. S. Moon, W.-K. Lee, and H.-S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

Madej, A. A.

Matsumoto, H.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30, 2323–2325 (2005).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Mattori, S.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

Minoshima, K.

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30, 2323–2325 (2005).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Miyagi, K.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

Moon, H. S.

H. S. Moon, W.-K. Lee, and H.-S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

Mori, T.

T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
[CrossRef]

T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
[CrossRef]

Nakagawa, K.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. B 13, 2708–2714 (1996).
[CrossRef]

Nakajima, Y.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Ohtsu, M.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6, 214–217 (1994).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Onae, A.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30, 2323–2325 (2005).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Rowley, W. R. C.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

Saitoh, T.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

Sasada, H.

H. Sasada and K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
[CrossRef] [PubMed]

S. Kinugawa and H. Sasada, “Wavenumber measurement of the 1.5-μm band of acetylene by semiconductor laser spectrometer,” Jpn. J. Appl. Phys., Part 1 29, 611–612 (1990).
[CrossRef]

Schibli, T. R.

Shimizu, T.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

Shioda, T.

T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
[CrossRef]

T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
[CrossRef]

Sugimoto, T.

T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
[CrossRef]

T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
[CrossRef]

Sugiyama, K.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Suh, H. -S.

H. S. Moon, W.-K. Lee, and H.-S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
[CrossRef]

Swartz, S.

P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Tanaka, Y.

T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
[CrossRef]

Taniguchi, A.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

Taubman, M. S.

Waltman, S.

P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Yamada, K.

Yamada, K. M. T.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

Ye, J.

Yoshida, M.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Yosuke, T.

T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” IEEE J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6, 214–217 (1994).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

P. A. Jungner, S. Swartz, M. Eickhoff, Y. Jun, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

H. S. Moon, W.-K. Lee, and H.-S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

J. Mol. Spectrosc. (1)

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249, 95–99 (2008).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys., Part 1 (2)

S. Kinugawa and H. Sasada, “Wavenumber measurement of the 1.5-μm band of acetylene by semiconductor laser spectrometer,” Jpn. J. Appl. Phys., Part 1 29, 611–612 (1990).
[CrossRef]

T. Shioda, T. Mori, T. Sugimoto, Y. Tanaka, and T. Kurokawa, “1 MHz-resolution spectroscopy based on light frequency sweeping using a single-sideband optical modulator,” Jpn. J. Appl. Phys., Part 1 46, 3626–3629 (2007).
[CrossRef]

Nat. Photonics (1)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Opt. Commun. (2)

T. Shioda, T. Mori, T. Sugimoto, T. Yosuke, and T. Kurokawa, “High-resolution spectroscopy based on optical phase modulator and optical frequency comb,” Opt. Commun. 282, 2909–2912 (2009).
[CrossRef]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181–187 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of measurement principle. The essential composition of the proposed system is shown above. The operation principle is shown schematically below. The light source, i.e., a 10 GHz comb, is scanned by a SSB modulator and coupled with the reference tunable laser light to generate heterodyne beat signals, whose power is proportional to the comb tooth intensity through a sample. The absolute frequency is not ensured by the reference light but by the comb light.

Fig. 2
Fig. 2

(a) Insertion loss and (b) S/N of the SSB optical modulator against input RF frequency.

Fig. 3
Fig. 3

(a) Insertion loss and (b) S/N of the SSB optical modulator against input optical wavelength.

Fig. 4
Fig. 4

Input (dashed line) and output (solid line) spectra of 5 GHz driven SSB optical modulator driven by 5 GHz RF signal.

Fig. 5
Fig. 5

Experimental setup.

Fig. 6
Fig. 6

RF power against the input optical power of the tooth in the comb. The gray zone represents the dynamic range, in which a linear relationship is maintained between RF power and input optical power.

Fig. 7
Fig. 7

Structure of 1 MHz width resonator. The 6.2 m optical fiber was sandwiched between mirrors of 0.87 reflectance.

Fig. 8
Fig. 8

Transmission spectrum of 1 MHz width resonator. The experimental data (circle) are fitted by a Lorentz function (solid curve).

Fig. 9
Fig. 9

Observed spectrum of H 13 C 14 N gas. The measurement frequency range was divided to four sections to increase the comb peak intensity, which was helpful in realizing the low-intensity regions in the comb spectrum.

Metrics