Abstract

Orthogonally polarized optical feedback has been proven to act on the frequency of semiconductor lasers. The coupling of this feedback to a nonlinear filter results in bistability for the frequency of the laser output [Phys. Rev. Lett. 94, 173902 (2005) ]. This phenomenon opens the way to the development of all-optical devices such as a switch between frequency states of the optical emission. For demonstrating this particular application we use an AsGaAl monomode laser emitting around 852 nm, together with a warm atomic cesium vapor as a resonant filter. The output frequency state of the switch is determined by two different frequencies of a control laser, with each control frequency changing the switch frequency in only one direction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Smith, “Lasers, nonlinear optics and optical computers,” Nature 316, 319–324 (1985).
    [CrossRef]
  2. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  3. G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
    [CrossRef]
  4. E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: Experiment and model,” Opt. Commun. 44, 277–282 (1983).
    [CrossRef]
  5. F. M. Raymo and S. Giordani, “All-optical processing with molecular switches,” Proc. Natl. Acad. Sci. U.S.A. 99, 4941–4944 (2002).
    [CrossRef]
  6. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [CrossRef]
  7. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
    [CrossRef] [PubMed]
  8. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32, 1317–1319 (2007).
    [CrossRef] [PubMed]
  9. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [CrossRef]
  10. A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).
  11. B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005).
    [CrossRef] [PubMed]
  12. M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier, “Multistability in the emission frequency of a semiconductor laser,” J. Opt. Soc. Am. B 24, 1867–1873 (2007).
    [CrossRef]
  13. H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett. 53, 1360–1362 (1988).
    [CrossRef]
  14. A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004).
    [CrossRef]
  15. D.M.Kane and K.A.Shore, eds., Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
    [CrossRef]
  16. D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004).
    [CrossRef]
  17. T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998).
    [CrossRef]
  18. D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
    [CrossRef]
  19. W. H. Loh, A. T. Schremer, and C. L. Tang, “Polarization self-modulation at multigigahertz frequencies in an external-cavity semiconductor-laser,” IEEE Photon. Technol. Lett. 2, 467–469 (1990).
    [CrossRef]
  20. W. H. Loh and C. L. Tang, “Numerical investigation of ultrahigh frequency polarization self-modulation in semiconductor lasers,” IEEE J. Quantum Electron. 27, 389–395 (1991).
    [CrossRef]
  21. S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
    [CrossRef]
  22. H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
    [CrossRef]
  23. M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
    [CrossRef]
  24. G. Langholtz, A. Kandel, and J. Mott, Foundations of Digital Logic Design (World Scientific, 1998), p. 340.
  25. T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
    [CrossRef]
  26. C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, “Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback,” IEEE J. Quantum Electron. 43, 261–268 (2007).
    [CrossRef]
  27. The current scanning is small enough to produce any appreciable amplitude modulation.
  28. The Doppler full width at half-maximum of the Cs D2 line shape in a Cs vapor cell is larger than the separation between the excited hyperfine sublevels so that the linear absorption on this transition consists of a single broad line (actually, the sum of three Doppler-broadened hyperfine lines), still reasonably well fitted by a Gaussian curve.
  29. Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003).
    [CrossRef]
  30. R. W. Keyes, “Information, computing technology, and quantum computing,” J. Phys. Condens. Matter 18, S703–S719 (2006).
    [CrossRef]

2007 (3)

2006 (1)

R. W. Keyes, “Information, computing technology, and quantum computing,” J. Phys. Condens. Matter 18, S703–S719 (2006).
[CrossRef]

2005 (2)

B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005).
[CrossRef] [PubMed]

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

2004 (2)

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004).
[CrossRef]

D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004).
[CrossRef]

2003 (4)

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[CrossRef]

D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003).
[CrossRef]

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

2002 (2)

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

F. M. Raymo and S. Giordani, “All-optical processing with molecular switches,” Proc. Natl. Acad. Sci. U.S.A. 99, 4941–4944 (2002).
[CrossRef]

1999 (1)

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

1998 (2)

T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998).
[CrossRef]

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

1993 (1)

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
[CrossRef]

1991 (1)

W. H. Loh and C. L. Tang, “Numerical investigation of ultrahigh frequency polarization self-modulation in semiconductor lasers,” IEEE J. Quantum Electron. 27, 389–395 (1991).
[CrossRef]

1990 (1)

W. H. Loh, A. T. Schremer, and C. L. Tang, “Polarization self-modulation at multigigahertz frequencies in an external-cavity semiconductor-laser,” IEEE Photon. Technol. Lett. 2, 467–469 (1990).
[CrossRef]

1988 (1)

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett. 53, 1360–1362 (1988).
[CrossRef]

1985 (1)

S. D. Smith, “Lasers, nonlinear optics and optical computers,” Nature 316, 319–324 (1985).
[CrossRef]

1983 (1)

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: Experiment and model,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

1976 (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Ackemann, T.

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

Aida, T.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Arimondo, E.

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: Experiment and model,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

Aumann, A.

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

Binder, R.

A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).

Blondel, M.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

Chang, J. -W.

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[CrossRef]

T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998).
[CrossRef]

Chen, R. -J.

T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998).
[CrossRef]

Cheng, D. -L.

D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004).
[CrossRef]

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[CrossRef]

Chevrollier, M.

M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier, “Multistability in the emission frequency of a semiconductor laser,” J. Opt. Soc. Am. B 24, 1867–1873 (2007).
[CrossRef]

C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, “Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback,” IEEE J. Quantum Electron. 43, 261–268 (2007).
[CrossRef]

B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005).
[CrossRef] [PubMed]

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004).
[CrossRef]

Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003).
[CrossRef]

Choquette, K. D.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Chuang, K. -L.

D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004).
[CrossRef]

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

da Rocha, A. F. A.

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004).
[CrossRef]

Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003).
[CrossRef]

Dagenais, M.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
[CrossRef]

Davis, P.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).

de Freitas, H. N.

Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003).
[CrossRef]

Deparis, O.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

Dinelli, B. M.

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: Experiment and model,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

Erneux, T.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

Farias, B.

M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier, “Multistability in the emission frequency of a semiconductor laser,” J. Opt. Soc. Am. B 24, 1867–1873 (2007).
[CrossRef]

B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).

Gavrielides, A.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Giordani, S.

F. M. Raymo and S. Giordani, “All-optical processing with molecular switches,” Proc. Natl. Acad. Sci. U.S.A. 99, 4941–4944 (2002).
[CrossRef]

Grassi, H.

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

Heil, T.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Hernandez, G.

Hohl, A.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Hou, H.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

Jiang, S.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
[CrossRef]

Kandel, A.

G. Langholtz, A. Kandel, and J. Mott, Foundations of Digital Logic Design (World Scientific, 1998), p. 340.

Kawaguchi, H.

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett. 53, 1360–1362 (1988).
[CrossRef]

Keyes, R. W.

R. W. Keyes, “Information, computing technology, and quantum computing,” J. Phys. Condens. Matter 18, S703–S719 (2006).
[CrossRef]

Kojima, K.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
[CrossRef]

Kwong, N. H.

A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).

Langholtz, G.

G. Langholtz, A. Kandel, and J. Mott, Foundations of Digital Logic Design (World Scientific, 1998), p. 340.

Li, H.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Lin, J. -M.

T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998).
[CrossRef]

Lippi, G. L.

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

Liu, E. -C.

D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004).
[CrossRef]

Loh, W. H.

W. H. Loh and C. L. Tang, “Numerical investigation of ultrahigh frequency polarization self-modulation in semiconductor lasers,” IEEE J. Quantum Electron. 27, 389–395 (1991).
[CrossRef]

W. H. Loh, A. T. Schremer, and C. L. Tang, “Polarization self-modulation at multigigahertz frequencies in an external-cavity semiconductor-laser,” IEEE Photon. Technol. Lett. 2, 467–469 (1990).
[CrossRef]

Lukin, D.

D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

Masoller, C.

C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, “Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback,” IEEE J. Quantum Electron. 43, 261–268 (2007).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Meégret, P.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

Morgan, R. A.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
[CrossRef]

Mott, J.

G. Langholtz, A. Kandel, and J. Mott, Foundations of Digital Logic Design (World Scientific, 1998), p. 340.

Oriá, M.

C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, “Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback,” IEEE J. Quantum Electron. 43, 261–268 (2007).
[CrossRef]

M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier, “Multistability in the emission frequency of a semiconductor laser,” J. Opt. Soc. Am. B 24, 1867–1873 (2007).
[CrossRef]

B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005).
[CrossRef] [PubMed]

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004).
[CrossRef]

Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003).
[CrossRef]

Pan, Z.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
[CrossRef]

Passerat de Silans, T.

B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005).
[CrossRef] [PubMed]

Raymo, F. M.

F. M. Raymo and S. Giordani, “All-optical processing with molecular switches,” Proc. Natl. Acad. Sci. U.S.A. 99, 4941–4944 (2002).
[CrossRef]

Rogister, F.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

Schapers, B.

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

Schremer, A. T.

W. H. Loh, A. T. Schremer, and C. L. Tang, “Polarization self-modulation at multigigahertz frequencies in an external-cavity semiconductor-laser,” IEEE Photon. Technol. Lett. 2, 467–469 (1990).
[CrossRef]

Schumacher, S.

A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).

Sciamanna, M.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

Segundo, P. C. S.

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004).
[CrossRef]

Seipenbusch, J. P.

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

Smirl, A. L.

A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).

Smith, S. D.

S. D. Smith, “Lasers, nonlinear optics and optical computers,” Nature 316, 319–324 (1985).
[CrossRef]

Sorrentino, T.

M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier, “Multistability in the emission frequency of a semiconductor laser,” J. Opt. Soc. Am. B 24, 1867–1873 (2007).
[CrossRef]

C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, “Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback,” IEEE J. Quantum Electron. 43, 261–268 (2007).
[CrossRef]

Tang, C. L.

W. H. Loh and C. L. Tang, “Numerical investigation of ultrahigh frequency polarization self-modulation in semiconductor lasers,” IEEE J. Quantum Electron. 27, 389–395 (1991).
[CrossRef]

W. H. Loh, A. T. Schremer, and C. L. Tang, “Polarization self-modulation at multigigahertz frequencies in an external-cavity semiconductor-laser,” IEEE Photon. Technol. Lett. 2, 467–469 (1990).
[CrossRef]

Tredicce, J. R.

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

Tsai, J. -K.

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[CrossRef]

Uchida, A.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Yasaka, H.

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett. 53, 1360–1362 (1988).
[CrossRef]

Yen, T. -C.

D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004).
[CrossRef]

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[CrossRef]

T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998).
[CrossRef]

Zhang, J.

Zhu, Y.

Appl. Phys. B (1)

Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993).
[CrossRef]

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett. 53, 1360–1362 (1988).
[CrossRef]

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. H. Loh and C. L. Tang, “Numerical investigation of ultrahigh frequency polarization self-modulation in semiconductor lasers,” IEEE J. Quantum Electron. 27, 389–395 (1991).
[CrossRef]

C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, “Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback,” IEEE J. Quantum Electron. 43, 261–268 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. H. Loh, A. T. Schremer, and C. L. Tang, “Polarization self-modulation at multigigahertz frequencies in an external-cavity semiconductor-laser,” IEEE Photon. Technol. Lett. 2, 467–469 (1990).
[CrossRef]

D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

R. W. Keyes, “Information, computing technology, and quantum computing,” J. Phys. Condens. Matter 18, S703–S719 (2006).
[CrossRef]

Nature (1)

S. D. Smith, “Lasers, nonlinear optics and optical computers,” Nature 316, 319–324 (1985).
[CrossRef]

Opt. Commun. (3)

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: Experiment and model,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998).
[CrossRef]

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002).
[CrossRef]

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. M. Raymo and S. Giordani, “All-optical processing with molecular switches,” Proc. Natl. Acad. Sci. U.S.A. 99, 4941–4944 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

Science (1)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

Other (6)

A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

D.M.Kane and K.A.Shore, eds., Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
[CrossRef]

G. Langholtz, A. Kandel, and J. Mott, Foundations of Digital Logic Design (World Scientific, 1998), p. 340.

The current scanning is small enough to produce any appreciable amplitude modulation.

The Doppler full width at half-maximum of the Cs D2 line shape in a Cs vapor cell is larger than the separation between the excited hyperfine sublevels so that the linear absorption on this transition consists of a single broad line (actually, the sum of three Doppler-broadened hyperfine lines), still reasonably well fitted by a Gaussian curve.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. The switch laser frequency is turned bistable through filtered orthogonally polarized optical feedback. The control laser operates the switch through manipulation of the atomic filter’s transparency at the switch laser frequency. DL, diode laser; BS, beam splitter; PM, power meter; G-F, Glan–Foucault polarizer; M, mirror; OI, optical isolator; λ / 2 , half-wave plate; PD, photodetector; F-P, Fabry–Perot interferometer. Beam polarization: ⇔, TE; ☉, TM.

Fig. 2
Fig. 2

Frequency bistability of the switch laser. (a) Filter Gaussian spectral profile. (b) Laser emission frequency as a function of the solitary frequency [Eq. (1)], for β = 1.5   GHz / mW , ϵ = 0.32 , and κ 0 = 5.4 × 10 2 . (c) Laser absorption of the switch laser beam by an analysis Cs vapor cell, as a function of the solitary laser frequency scanned around the 6 S 1 / 2 F = 4 6 P 3 / 2 F Cs D 2 transition, showing hysteretic behavior and bistable frequency states ν 1 and ν 2 .

Fig. 3
Fig. 3

Scheme of the energy levels of Cs involved in the switch process, with the populations of each ground-state hyperfine sublevels represented by dots whose diameters are proportional to the respective population, for a few laser configurations. (a) The equilibrium populations in the fundamental sublevels F = 3 and F = 4 in the absence of incident radiation are proportional to their respective level degeneracy ( g 4 / g 3 = 9 / 7 ) . (b),(c),(d) The switch laser beam is resonant with the 6 S 1 / 2 F = 4 6 P 3 / 2 F transition. (b) The switch laser beam slightly depletes the F = 4 population in favor of F = 3 [29]. (c) The control laser beam, resonant with the same F = 4 F transition, further depletes the F = 4 population, decreasing the medium opacity for the first laser. (d) The control laser beam, resonant with the F = 3 F transition, ensures re-equilibration of the ground sublevel populations [29].

Fig. 4
Fig. 4

Demonstration of the control pulse-induced switch from state ν 1 to state ν 2 : (a) The control laser amplitude incident on the atomic filter is modulated by a chopper. At t = t 0 , the first control pulse makes the switch laser frequency jump from state ν 1 to state ν 2 , as evidenced in (b) by the sudden variation of the absorption in the analysis cell. After switching, the control laser does not change the switch laser frequency state.

Fig. 5
Fig. 5

Demonstration of the control pulse-induced switch from state ν 2 to state ν 1 : (a) The control laser amplitude incident on the atomic filter is premodulated by a chopper. At t = t 0 , the first control pulse makes the switch laser frequency jump from state ν 2 to state ν 1 , as evidenced in (b) by the sudden variation of the absorption in the analysis cell.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν = ν 0 β κ 0 [ 1 ϵ f ( ν ) ] P ,

Metrics