Abstract

Signal excited-state absorption (ESA) in a bismuth oxide-based erbium-doped fiber (EDF) amplifier was investigated in numerical and experimental ways. The signal ESA cross-section of the bismuth oxide-based EDF was first measured by using a especially devised numerical-prediction technique that can give an accurate value for an arbitrary EDF length. Using a range of numerical simulations based on the measured signal ESA cross-section as well as experimental measurements, the signal ESA’s impact on the gain and noise figure was investigated. The signal ESA reduces the amplification bandwidth by 7  nm compared with that of the theoretical gain bandwidth that can be obtained without signal ESA. The longer wavelength limit of the amplification band was estimated to be 1632  nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 2002).
  2. H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647–649 (1999).
    [CrossRef]
  3. T. Sakamoto, S. Aozasa, M. Yamada, and M. Shimizu, “Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals,” J. Lightwave Technol. 24, 2287–2295 (2006).
    [CrossRef]
  4. S. Aozasa, A. Mori, K. Oikawa, H. Ono, and M. Yamada, “L-band Er3+-doped fluorophosphate glass-fibre amplifier,” Electron. Lett. 44, 273–274 (2008).
    [CrossRef]
  5. A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–867 (1997).
    [CrossRef]
  6. S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
    [CrossRef]
  7. A. Mori, T. Sakamoto, K. Kobayashi, K. Shikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, and M. Shimizu, “1.58-μm broad-band erbium-doped tellurite fiber amplifier,” J. Lightwave Technol. 20, 794–799 (2002).
    [CrossRef]
  8. H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of lanthanum and boron addition on suppression of cooperative upconversion in bismuth oxide-based erbium-doped fibers,” Jpn. J. Appl. Phys., Part 1 46, 3452–3454 (2007).
    [CrossRef]
  9. H. Hayashi, S. Tanabe, and N. Sugimoto, “Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber,” J. Lumin. 128, 333–340 (2008).
    [CrossRef]
  10. A. D. Guzman-Chavez, Yu. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
    [CrossRef]
  11. M. Bolshtyansky, I. Mandelbaum, and F. Pan, “Signal excited-state absorption in the L-band EDFA: Simulation and measurements,” J. Lightwave Technol. 23, 2796–2799 (2005).
    [CrossRef]
  12. C. Jiang, W. Hu, and Q. Zeng, “Numerical analysis of concentration quenching model of Er3+-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 39, 1266–1271 (2003).
    [CrossRef]
  13. J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
    [CrossRef]
  14. Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
    [CrossRef]
  15. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
    [CrossRef]
  16. Asahi Glass Company technical bulletin, http://www.agc.co.jp/english/biedf/bi5web.pdf.
  17. S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
    [CrossRef]
  18. P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67, 349–352 (1988).
    [CrossRef]
  19. H. Hayashi, N. Sugimoto, and S. Tanabe, “High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations,” Opt. Fiber Technol. 12, 282–287 (2006).
    [CrossRef]

2009 (1)

Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

2008 (3)

S. Aozasa, A. Mori, K. Oikawa, H. Ono, and M. Yamada, “L-band Er3+-doped fluorophosphate glass-fibre amplifier,” Electron. Lett. 44, 273–274 (2008).
[CrossRef]

H. Hayashi, S. Tanabe, and N. Sugimoto, “Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber,” J. Lumin. 128, 333–340 (2008).
[CrossRef]

A. D. Guzman-Chavez, Yu. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

2007 (1)

H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of lanthanum and boron addition on suppression of cooperative upconversion in bismuth oxide-based erbium-doped fibers,” Jpn. J. Appl. Phys., Part 1 46, 3452–3454 (2007).
[CrossRef]

2006 (2)

H. Hayashi, N. Sugimoto, and S. Tanabe, “High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations,” Opt. Fiber Technol. 12, 282–287 (2006).
[CrossRef]

T. Sakamoto, S. Aozasa, M. Yamada, and M. Shimizu, “Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals,” J. Lightwave Technol. 24, 2287–2295 (2006).
[CrossRef]

2005 (1)

2004 (1)

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

2003 (1)

C. Jiang, W. Hu, and Q. Zeng, “Numerical analysis of concentration quenching model of Er3+-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 39, 1266–1271 (2003).
[CrossRef]

2002 (1)

2000 (1)

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

1999 (1)

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647–649 (1999).
[CrossRef]

1997 (1)

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–867 (1997).
[CrossRef]

1995 (1)

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

1991 (1)

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
[CrossRef]

1988 (1)

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67, 349–352 (1988).
[CrossRef]

Andres, M. V.

Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

Aozasa, S.

S. Aozasa, A. Mori, K. Oikawa, H. Ono, and M. Yamada, “L-band Er3+-doped fluorophosphate glass-fibre amplifier,” Electron. Lett. 44, 273–274 (2008).
[CrossRef]

T. Sakamoto, S. Aozasa, M. Yamada, and M. Shimizu, “Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals,” J. Lightwave Technol. 24, 2287–2295 (2006).
[CrossRef]

Babonas, J.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

Barmenkov, Yu. O.

Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

A. D. Guzman-Chavez, Yu. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

Blixt, P.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

Bolshtyansky, M.

Cruz, J. L.

Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

Desurvire, E.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
[CrossRef]

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 2002).

Farries, M. C.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67, 349–352 (1988).
[CrossRef]

Fukasawa, Y.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Giles, C. R.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
[CrossRef]

Guzman-Chavez, A. D.

Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

A. D. Guzman-Chavez, Yu. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

Hanada, T.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Hayashi, H.

H. Hayashi, S. Tanabe, and N. Sugimoto, “Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber,” J. Lumin. 128, 333–340 (2008).
[CrossRef]

H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of lanthanum and boron addition on suppression of cooperative upconversion in bismuth oxide-based erbium-doped fibers,” Jpn. J. Appl. Phys., Part 1 46, 3452–3454 (2007).
[CrossRef]

H. Hayashi, N. Sugimoto, and S. Tanabe, “High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations,” Opt. Fiber Technol. 12, 282–287 (2006).
[CrossRef]

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Hirose, T.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Hoshino, K.

Hu, W.

C. Jiang, W. Hu, and Q. Zeng, “Numerical analysis of concentration quenching model of Er3+-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 39, 1266–1271 (2003).
[CrossRef]

Ito, S.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Jaskorzynska, B.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

Jiang, C.

C. Jiang, W. Hu, and Q. Zeng, “Numerical analysis of concentration quenching model of Er3+-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 39, 1266–1271 (2003).
[CrossRef]

Kanamori, T.

Kawai, S.

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647–649 (1999).
[CrossRef]

Kir’yanov, A. V.

Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

A. D. Guzman-Chavez, Yu. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

Kobayashi, K.

Mandelbaum, I.

Masuda, H.

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647–649 (1999).
[CrossRef]

Mori, A.

S. Aozasa, A. Mori, K. Oikawa, H. Ono, and M. Yamada, “L-band Er3+-doped fluorophosphate glass-fibre amplifier,” Electron. Lett. 44, 273–274 (2008).
[CrossRef]

A. Mori, T. Sakamoto, K. Kobayashi, K. Shikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, and M. Shimizu, “1.58-μm broad-band erbium-doped tellurite fiber amplifier,” J. Lightwave Technol. 20, 794–799 (2002).
[CrossRef]

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–867 (1997).
[CrossRef]

Morkel, P. R.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67, 349–352 (1988).
[CrossRef]

Nagashima, T.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Nilsson, J.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

Ochiai, K.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Ohara, S.

H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of lanthanum and boron addition on suppression of cooperative upconversion in bismuth oxide-based erbium-doped fibers,” Jpn. J. Appl. Phys., Part 1 46, 3452–3454 (2007).
[CrossRef]

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Ohishi, Y.

Oikawa, K.

Ono, H.

S. Aozasa, A. Mori, K. Oikawa, H. Ono, and M. Yamada, “L-band Er3+-doped fluorophosphate glass-fibre amplifier,” Electron. Lett. 44, 273–274 (2008).
[CrossRef]

Pan, F.

Poole, S. B.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67, 349–352 (1988).
[CrossRef]

Reyes, M.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Sakamoto, T.

Shikano, K.

Shimizu, M.

Sudo, S.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–867 (1997).
[CrossRef]

Sugimoto, N.

H. Hayashi, S. Tanabe, and N. Sugimoto, “Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber,” J. Lumin. 128, 333–340 (2008).
[CrossRef]

H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of lanthanum and boron addition on suppression of cooperative upconversion in bismuth oxide-based erbium-doped fibers,” Jpn. J. Appl. Phys., Part 1 46, 3452–3454 (2007).
[CrossRef]

H. Hayashi, N. Sugimoto, and S. Tanabe, “High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations,” Opt. Fiber Technol. 12, 282–287 (2006).
[CrossRef]

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Tanabe, S.

H. Hayashi, S. Tanabe, and N. Sugimoto, “Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber,” J. Lumin. 128, 333–340 (2008).
[CrossRef]

H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of lanthanum and boron addition on suppression of cooperative upconversion in bismuth oxide-based erbium-doped fibers,” Jpn. J. Appl. Phys., Part 1 46, 3452–3454 (2007).
[CrossRef]

H. Hayashi, N. Sugimoto, and S. Tanabe, “High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations,” Opt. Fiber Technol. 12, 282–287 (2006).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Yamada, M.

S. Aozasa, A. Mori, K. Oikawa, H. Ono, and M. Yamada, “L-band Er3+-doped fluorophosphate glass-fibre amplifier,” Electron. Lett. 44, 273–274 (2008).
[CrossRef]

T. Sakamoto, S. Aozasa, M. Yamada, and M. Shimizu, “Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals,” J. Lightwave Technol. 24, 2287–2295 (2006).
[CrossRef]

Zeng, Q.

C. Jiang, W. Hu, and Q. Zeng, “Numerical analysis of concentration quenching model of Er3+-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 39, 1266–1271 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. D. Guzman-Chavez, Yu. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

Electron. Lett. (2)

S. Aozasa, A. Mori, K. Oikawa, H. Ono, and M. Yamada, “L-band Er3+-doped fluorophosphate glass-fibre amplifier,” Electron. Lett. 44, 273–274 (2008).
[CrossRef]

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–867 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Jiang, W. Hu, and Q. Zeng, “Numerical analysis of concentration quenching model of Er3+-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 39, 1266–1271 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647–649 (1999).
[CrossRef]

J. Appl. Phys. (1)

Yu. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

J. Lightwave Technol. (5)

J. Lumin. (2)

H. Hayashi, S. Tanabe, and N. Sugimoto, “Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber,” J. Lumin. 128, 333–340 (2008).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of lanthanum and boron addition on suppression of cooperative upconversion in bismuth oxide-based erbium-doped fibers,” Jpn. J. Appl. Phys., Part 1 46, 3452–3454 (2007).
[CrossRef]

Opt. Commun. (1)

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67, 349–352 (1988).
[CrossRef]

Opt. Fiber Technol. (2)

H. Hayashi, N. Sugimoto, and S. Tanabe, “High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations,” Opt. Fiber Technol. 12, 282–287 (2006).
[CrossRef]

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283–295 (2004).
[CrossRef]

Other (2)

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 2002).

Asahi Glass Company technical bulletin, http://www.agc.co.jp/english/biedf/bi5web.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of energy levels and erbium transition in bismuth oxide glass assuming 1480 nm pumping.

Fig. 2
Fig. 2

Flow chart of the numerical-prediction technique for the measurement of the signal ESA cross-section.

Fig. 3
Fig. 3

Absorption and stimulated emission cross-section of the bismuth EDF used in this study [16, 17].

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

Signal ESA cross-section of the bismuth oxide-based EDF together with the stimulated emission cross-section.

Fig. 6
Fig. 6

Output optical spectrum comparison for three cases: Experimental measurement (circles), numerical simulation with signal ESA (thick curve), and numerical simulation without signal ESA (thin curve). Inset: Close-up view of the spectra at wavelengths of 1620–1650 nm.

Fig. 7
Fig. 7

Signal gain comparison for three cases: Experimental measurement (circles), numerical simulation with signal ESA (thick curve), and numerical simulation without signal ESA (thin curve).

Fig. 8
Fig. 8

NF comparison for three cases: Experimental measurement (circles), numerical simulation with signal ESA (thick curve), and numerical simulation without signal ESA (thin curve).

Tables (1)

Tables Icon

Table 1 Parameters of the Bismuth Oxide-Based EDF

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d N 1 S d t = ( R 12 + W 12 ) N 1 S + ( A 21 + W 21 + R 21 + C u p N 2 S ) N 2 S ,
d N 2 S d t = ( R 12 + W 12 ) N 1 S ( A 21 + W 21 + R 21 + 2 C u p N 2 S + W 24 ESA ) N 2 S + A 32 N 3 S ,
d N 3 S d t = A 32 N 3 S + A 43 N 4 S ,
d N 4 S d t = ( C u p N 2 S + W 24 ESA ) N 2 S A 43 N 4 S ,
N 1 S + N 2 S + N 3 S + N 4 S = ( 1 m k ) N t ,
R 12 = ( P p + + P p h ν p π r m 2 ) Γ P σ p a ,
R 21 = ( P p + + P p h ν p π r m 2 ) Γ P σ p e ,
W 12 = ( P S + P ASE + + P ASE h ν s π r m 2 ) Γ S σ s a ,
W 21 = ( P S + P ASE + + P ASE h ν s π r m 2 ) Γ S σ s e ,
W 24 ESA = ( P ASE + + P ASE h ν s π r m 2 ) Γ S σ ESA .
d N 1 P d t = ( R 12 + W 12 ) N 1 P + ( A 21 + W 21 + R 21 + R 12 + W 12 ) N 2 P ,
d N 2 P d t = ( R 12 + W 12 ) N 1 P ( A 21 + W 21 + R 21 + R 12 + W 12 + W 24 ESA ) N 2 P + A 32 N 3 P ,
d N 3 P d t = A 32 N 3 P + A 43 N 4 P ,
d N 4 P d t = W 24 ESA N 2 P A 43 N 4 P ,
N 1 P + N 2 P + N 3 P + N 4 P = m k N t ,
N 1 = N 1 S + N 1 P ,
N 2 = N 2 S + N 2 P ,
N 3 = N 3 S + N 3 P ,
N 4 = N 4 S + N 4 P ,
N t = N 1 + N 2 + N 3 + N 4 ,
d P p ± d z = ( σ p a N 1 σ p e N 2 ) P p ± α p P p ,
d P s d z = ( σ s e N 2 σ s a N 1 σ ESA N 2 ) P s α s P s ,
d P ASE ± ( v ) d z = ± ( σ s e N 2 σ s a N 1 σ ESA N 2 ) P ASE ± ± 2 σ s e N 2 h ν s Δ ν α s P ASE ± ,

Metrics