Abstract

We compare the slope efficiency of a 1093 nm ytterbium distributed feedback fiber laser obtained in the experiment to the value calculated within the analytical model. The measured reflection and transmission spectra of the laser cavity, which is formed by a 4 cm long π-shifted fiber Bragg grating, allowed us to determine the cavity parameters employed in the analytical model. We took into account pump absorption that is significant for the model of ytterbium fiber lasers. A good agreement between the theory and the experiment is demonstrated. The considered analytical model is suitable for optimizing distributed feedback fiber laser parameters.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
    [CrossRef] [PubMed]
  2. J.-F. Cliche, M. Allard, and M. Têtu, “Ultra-narrow linewidth and high frequency stability laser sources,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CFC5.
  3. W. H. Loh and R. I. Laming, “1.55 μm phase-shifted distributed feedback fibre laser,” Electron. Lett. 31, 1440–1442 (1995).
    [CrossRef]
  4. A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
    [CrossRef]
  5. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29, 1503–1505 (2004).
    [CrossRef] [PubMed]
  6. H. Simonsen, J. Henningsen, and S. Søgaard, “DFB fiber lasers as optical wavelength standards in the 1.5-μm region,” IEEE Trans. Instrum. Meas. 50, 482–485 (2001).
    [CrossRef]
  7. D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
    [CrossRef]
  8. J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006).
    [CrossRef]
  9. F. Markert, M. Scheid, D. Kolbe, and J. Walz, “4 W continuous-wave narrow-linewidth tunable solid-state laser source at 546 nm by externally frequency doubling a ytterbium-doped single-mode fiber laser system,” Opt. Express 15, 14476–14481 (2007).
    [CrossRef] [PubMed]
  10. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
    [CrossRef]
  11. B. Jaskorzynska, E. V. Vanin, S. Helmfrid, and A. Asseh, “Gain saturation and pump depletion in high-efficiency distributed-feedback rare-earth-doped lasers,” Opt. Lett. 21, 1366–1368 (1996).
    [CrossRef] [PubMed]
  12. V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Design of DFB fibre lasers,” Electron. Lett. 34, 2028–2030 (1998).
    [CrossRef]
  13. V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Optimising erbium-doped DFB fibre laser length with respect to maximum output power,” Electron. Lett. 35, 300–302 (1999).
    [CrossRef]
  14. K. Yelen, L. M. B. Hickey, and M. N. Zervas, “Experimentally verified modeling of erbium-ytterbium co-doped DFB fiber lasers,” J. Lightwave Technol. 23, 1380–1392 (2005).
    [CrossRef]
  15. S. Foster, “Spatial mode structure of the distributed feedback fiber laser,” IEEE J. Quantum Electron. 40, 884–892 (2004).
    [CrossRef]
  16. S. Foster, “Dynamical noise in single-mode distributed feedback fiber lasers,” IEEE J. Quantum Electron. 40, 1283–1293 (2004).
    [CrossRef]
  17. S. Foster, “A new derivation of the fundamental mode equations for low gain distributed feedback lasers,” IEEE J. Quantum Electron. 43, 4–5 (2007).
    [CrossRef]
  18. S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78, 013820 (2008).
    [CrossRef]
  19. S. D. Agger and J. H. Povlsen, “Comments on “Dynamical noise in single-mode distributed feedback fiber lasers”,” IEEE J. Quantum Electron. 42, 733–734 (2006).
    [CrossRef]
  20. A. A. Vlasov, D. E. Churin, and S. A. Babin, “Specifics of Bragg gratings inscription and characterization in polarization maintaining Yb-doped fiber for DFB lasers,” Laser Phys. 20 (accepted).
  21. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
    [CrossRef]
  22. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22, 694–696 (1997).
    [CrossRef] [PubMed]
  23. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539–11544 (2006).
    [CrossRef] [PubMed]
  24. J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5, 712–733 (1987).
    [CrossRef]
  25. M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
    [CrossRef]
  26. E. Rønnekleiv, J. T. Kringlebotn, and D. Thingbø, “800 GHz continuously tunable fiber DFB laser for high speed high accuracy spectral characterization,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWB2.
  27. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

2008 (1)

S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78, 013820 (2008).
[CrossRef]

2007 (2)

2006 (4)

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539–11544 (2006).
[CrossRef] [PubMed]

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

S. D. Agger and J. H. Povlsen, “Comments on “Dynamical noise in single-mode distributed feedback fiber lasers”,” IEEE J. Quantum Electron. 42, 733–734 (2006).
[CrossRef]

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006).
[CrossRef]

2005 (2)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “Experimentally verified modeling of erbium-ytterbium co-doped DFB fiber lasers,” J. Lightwave Technol. 23, 1380–1392 (2005).
[CrossRef]

D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
[CrossRef]

2004 (4)

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29, 1503–1505 (2004).
[CrossRef] [PubMed]

S. Foster, “Spatial mode structure of the distributed feedback fiber laser,” IEEE J. Quantum Electron. 40, 884–892 (2004).
[CrossRef]

S. Foster, “Dynamical noise in single-mode distributed feedback fiber lasers,” IEEE J. Quantum Electron. 40, 1283–1293 (2004).
[CrossRef]

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
[CrossRef]

2001 (1)

H. Simonsen, J. Henningsen, and S. Søgaard, “DFB fiber lasers as optical wavelength standards in the 1.5-μm region,” IEEE Trans. Instrum. Meas. 50, 482–485 (2001).
[CrossRef]

1999 (1)

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Optimising erbium-doped DFB fibre laser length with respect to maximum output power,” Electron. Lett. 35, 300–302 (1999).
[CrossRef]

1998 (1)

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Design of DFB fibre lasers,” Electron. Lett. 34, 2028–2030 (1998).
[CrossRef]

1997 (2)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22, 694–696 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (2)

W. H. Loh and R. I. Laming, “1.55 μm phase-shifted distributed feedback fibre laser,” Electron. Lett. 31, 1440–1442 (1995).
[CrossRef]

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

1994 (1)

1987 (1)

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5, 712–733 (1987).
[CrossRef]

Agger, S.

Agger, S. D.

S. D. Agger and J. H. Povlsen, “Comments on “Dynamical noise in single-mode distributed feedback fiber lasers”,” IEEE J. Quantum Electron. 42, 733–734 (2006).
[CrossRef]

Allard, M.

J.-F. Cliche, M. Allard, and M. Têtu, “Ultra-narrow linewidth and high frequency stability laser sources,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CFC5.

Archambault, J. -L.

Asseh, A.

B. Jaskorzynska, E. V. Vanin, S. Helmfrid, and A. Asseh, “Gain saturation and pump depletion in high-efficiency distributed-feedback rare-earth-doped lasers,” Opt. Lett. 21, 1366–1368 (1996).
[CrossRef] [PubMed]

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

Babin, S. A.

A. A. Vlasov, D. E. Churin, and S. A. Babin, “Specifics of Bragg gratings inscription and characterization in polarization maintaining Yb-doped fiber for DFB lasers,” Laser Phys. 20 (accepted).

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

Bufetov, I. A.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
[CrossRef]

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22, 694–696 (1997).
[CrossRef] [PubMed]

Churin, D. E.

A. A. Vlasov, D. E. Churin, and S. A. Babin, “Specifics of Bragg gratings inscription and characterization in polarization maintaining Yb-doped fiber for DFB lasers,” Laser Phys. 20 (accepted).

Cliche, J. -F.

J.-F. Cliche, M. Allard, and M. Têtu, “Ultra-narrow linewidth and high frequency stability laser sources,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CFC5.

De Freitas, J.

D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
[CrossRef]

Dianov, E. M.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
[CrossRef]

Dong, L.

Edwall, G.

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

Foster, S.

S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78, 013820 (2008).
[CrossRef]

S. Foster, “A new derivation of the fundamental mode equations for low gain distributed feedback lasers,” IEEE J. Quantum Electron. 43, 4–5 (2007).
[CrossRef]

S. Foster, “Spatial mode structure of the distributed feedback fiber laser,” IEEE J. Quantum Electron. 40, 884–892 (2004).
[CrossRef]

S. Foster, “Dynamical noise in single-mode distributed feedback fiber lasers,” IEEE J. Quantum Electron. 40, 1283–1293 (2004).
[CrossRef]

Friedenauer, A.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

Hänsch, T. W.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Helmfrid, S.

Henningsen, J.

H. Simonsen, J. Henningsen, and S. Søgaard, “DFB fiber lasers as optical wavelength standards in the 1.5-μm region,” IEEE Trans. Instrum. Meas. 50, 482–485 (2001).
[CrossRef]

Herrmann, M.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Hickey, L.

D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
[CrossRef]

Hickey, L. M. B.

Hill, D. J.

D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
[CrossRef]

Hodder, B.

D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
[CrossRef]

Hoffman, H. J.

Hsu, K.

Jaskorzynska, B.

Kahra, S.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Kolbe, D.

Koponen, J. J.

Kravtsov, K. S.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
[CrossRef]

Kringlebotn, J. T.

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
[CrossRef] [PubMed]

E. Rønnekleiv, J. T. Kringlebotn, and D. Thingbø, “800 GHz continuously tunable fiber DFB laser for high speed high accuracy spectral characterization,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWB2.

Laming, R. I.

W. H. Loh and R. I. Laming, “1.55 μm phase-shifted distributed feedback fibre laser,” Electron. Lett. 31, 1440–1442 (1995).
[CrossRef]

Lauridsen, V. C.

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Optimising erbium-doped DFB fibre laser length with respect to maximum output power,” Electron. Lett. 35, 300–302 (1999).
[CrossRef]

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Design of DFB fibre lasers,” Electron. Lett. 34, 2028–2030 (1998).
[CrossRef]

Loh, W. H.

Ma, L. -S.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006).
[CrossRef]

Margulis, W.

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

Markert, F.

F. Markert, M. Scheid, D. Kolbe, and J. Walz, “4 W continuous-wave narrow-linewidth tunable solid-state laser source at 546 nm by externally frequency doubling a ytterbium-doped single-mode fiber laser system,” Opt. Express 15, 14476–14481 (2007).
[CrossRef] [PubMed]

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Mel’kumov, M. A.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
[CrossRef]

Minelly, J. D.

Nilsson, J.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

Payne, D. N.

Petersen, L.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Povlsen, J. H.

S. D. Agger and J. H. Povlsen, “Comments on “Dynamical noise in single-mode distributed feedback fiber lasers”,” IEEE J. Quantum Electron. 42, 733–734 (2006).
[CrossRef]

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29, 1503–1505 (2004).
[CrossRef] [PubMed]

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Optimising erbium-doped DFB fibre laser length with respect to maximum output power,” Electron. Lett. 35, 300–302 (1999).
[CrossRef]

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Design of DFB fibre lasers,” Electron. Lett. 34, 2028–2030 (1998).
[CrossRef]

Reekie, L.

Robertsson, L.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006).
[CrossRef]

Rønnekleiv, E.

E. Rønnekleiv, J. T. Kringlebotn, and D. Thingbø, “800 GHz continuously tunable fiber DFB laser for high speed high accuracy spectral characterization,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWB2.

Sahlgren, B.

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

Sandgren, S.

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

Schätz, T.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Scheid, M.

Schmitz, H.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Shubin, A. V.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
[CrossRef]

Simonsen, H.

H. Simonsen, J. Henningsen, and S. Søgaard, “DFB fiber lasers as optical wavelength standards in the 1.5-μm region,” IEEE Trans. Instrum. Meas. 50, 482–485 (2001).
[CrossRef]

Söderlund, M. J.

Søgaard, S.

H. Simonsen, J. Henningsen, and S. Søgaard, “DFB fiber lasers as optical wavelength standards in the 1.5-μm region,” IEEE Trans. Instrum. Meas. 50, 482–485 (2001).
[CrossRef]

Stone, J.

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5, 712–733 (1987).
[CrossRef]

Storoy, H.

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

Stubbe, R.

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

Svelto, O.

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

Tammela, S. K. T.

Têtu, M.

J.-F. Cliche, M. Allard, and M. Têtu, “Ultra-narrow linewidth and high frequency stability laser sources,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CFC5.

Thingbø, D.

E. Rønnekleiv, J. T. Kringlebotn, and D. Thingbø, “800 GHz continuously tunable fiber DFB laser for high speed high accuracy spectral characterization,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWB2.

Thomas, S. D.

D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

Udem, Th.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Vanin, E. V.

Varming, P.

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29, 1503–1505 (2004).
[CrossRef] [PubMed]

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Optimising erbium-doped DFB fibre laser length with respect to maximum output power,” Electron. Lett. 35, 300–302 (1999).
[CrossRef]

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Design of DFB fibre lasers,” Electron. Lett. 34, 2028–2030 (1998).
[CrossRef]

Vlasov, A. A.

A. A. Vlasov, D. E. Churin, and S. A. Babin, “Specifics of Bragg gratings inscription and characterization in polarization maintaining Yb-doped fiber for DFB lasers,” Laser Phys. 20 (accepted).

Wallerand, J. -P.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006).
[CrossRef]

Walz, J.

Yelen, K.

Zervas, M. N.

Zucco, M.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006).
[CrossRef]

Appl. Phys. B (1)

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[CrossRef]

Electron. Lett. (4)

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Design of DFB fibre lasers,” Electron. Lett. 34, 2028–2030 (1998).
[CrossRef]

V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Optimising erbium-doped DFB fibre laser length with respect to maximum output power,” Electron. Lett. 35, 300–302 (1999).
[CrossRef]

W. H. Loh and R. I. Laming, “1.55 μm phase-shifted distributed feedback fibre laser,” Electron. Lett. 31, 1440–1442 (1995).
[CrossRef]

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. Foster, “Spatial mode structure of the distributed feedback fiber laser,” IEEE J. Quantum Electron. 40, 884–892 (2004).
[CrossRef]

S. Foster, “Dynamical noise in single-mode distributed feedback fiber lasers,” IEEE J. Quantum Electron. 40, 1283–1293 (2004).
[CrossRef]

S. Foster, “A new derivation of the fundamental mode equations for low gain distributed feedback lasers,” IEEE J. Quantum Electron. 43, 4–5 (2007).
[CrossRef]

S. D. Agger and J. H. Povlsen, “Comments on “Dynamical noise in single-mode distributed feedback fiber lasers”,” IEEE J. Quantum Electron. 42, 733–734 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

H. Simonsen, J. Henningsen, and S. Søgaard, “DFB fiber lasers as optical wavelength standards in the 1.5-μm region,” IEEE Trans. Instrum. Meas. 50, 482–485 (2001).
[CrossRef]

J. Lightwave Technol. (2)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “Experimentally verified modeling of erbium-ytterbium co-doped DFB fiber lasers,” J. Lightwave Technol. 23, 1380–1392 (2005).
[CrossRef]

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5, 712–733 (1987).
[CrossRef]

Laser Phys. (1)

A. A. Vlasov, D. E. Churin, and S. A. Babin, “Specifics of Bragg gratings inscription and characterization in polarization maintaining Yb-doped fiber for DFB lasers,” Laser Phys. 20 (accepted).

Metrologia (1)

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006).
[CrossRef]

Opt. Commun. (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78, 013820 (2008).
[CrossRef]

Proc. SPIE (1)

D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005).
[CrossRef]

Quantum Electron. (1)

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004).
[CrossRef]

Other (3)

E. Rønnekleiv, J. T. Kringlebotn, and D. Thingbø, “800 GHz continuously tunable fiber DFB laser for high speed high accuracy spectral characterization,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWB2.

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

J.-F. Cliche, M. Allard, and M. Têtu, “Ultra-narrow linewidth and high frequency stability laser sources,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CFC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Unabsorbed pump power ( λ p = 976   nm ) in dependence of launched pump power measured for the sample of ytterbium-doped fiber. Experimental data (points) and the fit (curve) to obtain the unsaturable loss ( α p ) .

Fig. 2
Fig. 2

DFB FL cavity structure. Forward I + and backward I wave profiles along the π-shifted FBG for the test signal launched into the black port (resonant case). Bottom: definitions of transmission and left reflection coefficients for the whole cavity ( T , R b ) and for the distributed mirrors ( T 1 , 2 , R 1 , 2 ) .

Fig. 3
Fig. 3

DFB FBG spectra measurement setup: PD i , photodiodes; c i , couplers with 50/50 division ratio; SF laser, a single frequency tunable fiber laser.

Fig. 4
Fig. 4

Measured reflection coefficient R b ( Δ ν ) around the cavity resonance, frequency reference signal from the Mach–Zehnder interferometer (vertically scaled and shifted), and Lorentz fit with 1 R b = 0.27 and δ ν = 13.7   MHz .

Fig. 5
Fig. 5

Measurement of DFB FL generation power setup: LD, 976 nm laser diode; WDM 1 , 2 , 1093/976 nm wavelength division multiplexers.

Fig. 6
Fig. 6

(a) Laser power from the black and white ports in dependence of pump power. (b) Pump power that passed through the cavity. Experimental data are shown by points. The lines are linear fit for P in < 50   mW .

Fig. 7
Fig. 7

DFB FL slope efficiency (black) and fraction of unabsorbed pump power (gray) in dependence of FBG strength for constant background absorption (solid curves) and for the case α l κ (dotted curves).

Tables (1)

Tables Icon

Table 1 DFB FL Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

d P d z = α p + g p I / I s 1 + I / I s + P / P s P α p P ,
[ α p L ] [ α p L ] ln [ ( α p + α p ) L P s T out ] + [ α p L ] P in T in T out [ ( α p + α p ) L P s T out ] + [ α p L ] P out + ln P in T in T out P out [ α p L ] [ α p L ] = 0.
d I d z = g l P / P s α l 1 + I / I s + P / P s I α l I .
I ( z 1 ) + I + ( z 2 ) + z 1 z 2 [ I + ( z ) + I ( z ) ] α l d z = I + ( z 1 ) ,
R b + T + α l L e ( 1 + R 2 ) T / T 2 = 1 ,
L e = z 1 z 2 I + ( z ) + I ( z ) I + ( 0 ) + I ( 0 ) d z .
R w + T + α l L e ( 1 + R 1 ) T / T 1 = 1 ,
α l L e + T 1 + T 2 2 = 2 π n L e δ ν c = δ k L e ,
α l = ( 1 R b T ) ( 1 R w T ) ( 1 R b ) ( 1 R w ) T 2 δ k ,
T 1 , 2 L e = 2 T ( 1 R b , w T ) ( 1 R b ) ( 1 R w ) T 2 δ k .
I out = I + ( z 2 ) + I ( z 1 ) = z 1 z 2 I ( z ) [ g ( z ) α l ] d z ,
g ( z ) = g l α l P s / P ( z ) 1 + P s / P ( z ) + [ I ( z ) / I s ] [ P s / P ( z ) ] ,
X = 2 I 0 P s P 0 I s
4 g l κ X ln 1 + 1 + X 2 = T 1 + T 2 2 + α l κ = δ k κ .
P 0 = P ( z 1 ) exp ( α p | z 1 | F / 2 ) ,
F = 2 g p κ ln 1 + 1 + X 2 .
η = I out P ( z 1 ) = X I s ( T 1 + T 2 ) 4 P s exp ( α p | z 1 | F / 2 ) ,
P ( z 2 ) = P ( z 1 ) exp ( α p ( | z 1 | + z 2 ) F ) .
η = λ p λ l T 1 + T 2 T 1 + T 2 + 2 α l / κ g p κ 2   ln 1 + 1 + X 2 exp ( α p | z 1 | F / 2 ) .

Metrics