Abstract

A non-symmetrical theoretical model is used to describe the propagation of laser beams in dielectric capillary waveguides under non-ideal coupling conditions. The displacement of the laser beam focusing point from the capillary axis, the deviation of the transverse energy distribution from a symmetric one, and an angle of incidence different from zero modify, through the excitation and beating of several modes, the energy repartition during the propagation in the waveguides. The results of modeling are in very good agreement with experimental results, obtained with a low-intensity laser beam on a test bench, where good control of the laser energy distribution in the focal plane, the focusing point position, and the angle of incidence was achieved.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletops,” Phys. Today 56(6), 47–53 (2003).
    [CrossRef]
  2. T. Katsouleas, “Progress on plasma accelerators: from the energy frontier to tabletops,” Plasma Phys. Controlled Fusion 46, B575–B582 (2004).
    [CrossRef]
  3. E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996), and references therein.
    [CrossRef]
  4. F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
    [CrossRef]
  5. B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
    [CrossRef]
  6. P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
    [CrossRef] [PubMed]
  7. A. Y. Goltsov, D. V. Korobkin, Y. I. Ping, and S. Suckewer, “Transmission of laser radiation through microcapillary plasmas,” J. Opt. Soc. Am. B 17, 868–876 (2000).
    [CrossRef]
  8. M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
    [CrossRef] [PubMed]
  9. B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
    [CrossRef]
  10. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  11. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972).
  12. N.E. Andreev, Y. Nishida, and N. Yugami, “Propagation of short intense laser pulses in gas-filled capillaries,” Phys. Rev. E 65, 056407 (2002).
    [CrossRef]
  13. M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, “Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation,” Phys. Plasmas 13, 053114 (2006).
    [CrossRef]
  14. G. Genoud, M. Burza, A. Persson, F. Wojda, and C.-G. Wahlström are preparing a paper to be called “Active pointing stabilization of a TW laser.”
  15. N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
    [CrossRef]
  16. N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
    [CrossRef]

2010 (1)

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

2009 (1)

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

2008 (1)

N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
[CrossRef]

2007 (1)

M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
[CrossRef] [PubMed]

2006 (2)

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, “Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation,” Phys. Plasmas 13, 053114 (2006).
[CrossRef]

2004 (1)

T. Katsouleas, “Progress on plasma accelerators: from the energy frontier to tabletops,” Plasma Phys. Controlled Fusion 46, B575–B582 (2004).
[CrossRef]

2003 (1)

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletops,” Phys. Today 56(6), 47–53 (2003).
[CrossRef]

2002 (2)

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

N.E. Andreev, Y. Nishida, and N. Yugami, “Propagation of short intense laser pulses in gas-filled capillaries,” Phys. Rev. E 65, 056407 (2002).
[CrossRef]

2000 (1)

1996 (1)

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996), and references therein.
[CrossRef]

1989 (1)

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

Andreev, N.

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Andreev, N. E.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
[CrossRef]

M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, “Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation,” Phys. Plasmas 13, 053114 (2006).
[CrossRef]

N.E. Andreev, Y. Nishida, and N. Yugami, “Propagation of short intense laser pulses in gas-filled capillaries,” Phys. Rev. E 65, 056407 (2002).
[CrossRef]

Batani, D.

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Bettaibi, I.

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Brunel, F.

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

Brunetti, E.

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

Burnett, N. H.

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

Burza, M.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

G. Genoud, M. Burza, A. Persson, F. Wojda, and C.-G. Wahlström are preparing a paper to be called “Active pointing stabilization of a TW laser.”

Cassou, K.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

Corkum, P. B.

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

Courtois, C.

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Cros, B.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
[CrossRef]

M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, “Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation,” Phys. Plasmas 13, 053114 (2006).
[CrossRef]

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Di Bernardo, A.

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Dromey, B.

M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
[CrossRef] [PubMed]

Dubau, J.

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Esarey, E.

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996), and references therein.
[CrossRef]

Farinet, M.

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Fortov, V. E.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

Foster, P.

M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
[CrossRef] [PubMed]

Genoud, G.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

G. Genoud, M. Burza, A. Persson, F. Wojda, and C.-G. Wahlström are preparing a paper to be called “Active pointing stabilization of a TW laser.”

Glinec, Y.

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

Goltsov, A. Y.

Hooker, S. M.

M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
[CrossRef] [PubMed]

Jaroszynski, D.

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

Joshi, C.

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletops,” Phys. Today 56(6), 47–53 (2003).
[CrossRef]

Katsouleas, T.

T. Katsouleas, “Progress on plasma accelerators: from the energy frontier to tabletops,” Plasma Phys. Controlled Fusion 46, B575–B582 (2004).
[CrossRef]

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletops,” Phys. Today 56(6), 47–53 (2003).
[CrossRef]

Korobkin, D. V.

Krall, J.

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996), and references therein.
[CrossRef]

Kuznetsov, S.

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Landreman, M.

M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
[CrossRef] [PubMed]

Lundh, O.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972).

Matthieussent, G.

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Maynard, G.

N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
[CrossRef]

M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, “Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation,” Phys. Plasmas 13, 053114 (2006).
[CrossRef]

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Mocek, T.

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Mora, P.

N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
[CrossRef]

Nishida, Y.

N.E. Andreev, Y. Nishida, and N. Yugami, “Propagation of short intense laser pulses in gas-filled capillaries,” Phys. Rev. E 65, 056407 (2002).
[CrossRef]

Persson, A.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

G. Genoud, M. Burza, A. Persson, F. Wojda, and C.-G. Wahlström are preparing a paper to be called “Active pointing stabilization of a TW laser.”

Ping, Y. I.

Sebban, S.

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Shanks, R. P.

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

Sprangle, P.

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996), and references therein.
[CrossRef]

Suckewer, S.

Ting, A.

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996), and references therein.
[CrossRef]

Veysman, M.

M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, “Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation,” Phys. Plasmas 13, 053114 (2006).
[CrossRef]

Vieux, G.

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Wahlstrom, C. -G.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

Wahlström, C. G.

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

Wahlström, C. -G.

G. Genoud, M. Burza, A. Persson, F. Wojda, and C.-G. Wahlström are preparing a paper to be called “Active pointing stabilization of a TW laser.”

Wojda, F.

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
[CrossRef]

G. Genoud, M. Burza, A. Persson, F. Wojda, and C.-G. Wahlström are preparing a paper to be called “Active pointing stabilization of a TW laser.”

Yugami, N.

N.E. Andreev, Y. Nishida, and N. Yugami, “Propagation of short intense laser pulses in gas-filled capillaries,” Phys. Rev. E 65, 056407 (2002).
[CrossRef]

Zepf, M.

M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
[CrossRef] [PubMed]

IEEE Trans. Plasma Sci. (2)

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996), and references therein.
[CrossRef]

N. E. Andreev, B. Cros, G. Maynard, P. Mora, and F. Wojda, “Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration,” IEEE Trans. Plasma Sci. 36, 1746–1750 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

N. E. Andreev, K. Cassou, F. Wojda, G. Genoud, M. Burza, O. Lundh, A. Persson, B. Cros, V. E. Fortov, and C.-G. Wahlstrom, “Analysis of laser wakefield dynamics in capillary tubes,” New J. Phys. 12, 045024 (2010).
[CrossRef]

Phys. Plasmas (1)

M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, “Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation,” Phys. Plasmas 13, 053114 (2006).
[CrossRef]

Phys. Rev. A (1)

B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, “Characterization of the collisionally pumped OFI soft x-ray laser at 41.8 nm driven in capillary tubes,” Phys. Rev. A 73, 033801 (2006).
[CrossRef]

Phys. Rev. E (3)

F. Wojda, K. Cassou, G. Genoud, M. Burza, Y. Glinec, O. Lundh, A. Persson, G. Vieux, E. Brunetti, R. P. Shanks, D. Jaroszynski, N. E. Andreev, C. G. Wahlström, and B. Cros, “Laser-driven plasma waves in capillary tubes,” Phys. Rev. E 80, 066403 (2009).
[CrossRef]

B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, “Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding,” Phys. Rev. E 65, 026405 (2002).
[CrossRef]

N.E. Andreev, Y. Nishida, and N. Yugami, “Propagation of short intense laser pulses in gas-filled capillaries,” Phys. Rev. E 65, 056407 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions,” Phys. Rev. Lett. 99, 143901 (2007).
[CrossRef] [PubMed]

Phys. Today (1)

C. Joshi and T. Katsouleas, “Plasma accelerators at the energy frontier and on tabletops,” Phys. Today 56(6), 47–53 (2003).
[CrossRef]

Plasma Phys. Controlled Fusion (1)

T. Katsouleas, “Progress on plasma accelerators: from the energy frontier to tabletops,” Plasma Phys. Controlled Fusion 46, B575–B582 (2004).
[CrossRef]

Other (3)

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972).

G. Genoud, M. Burza, A. Persson, F. Wojda, and C.-G. Wahlström are preparing a paper to be called “Active pointing stabilization of a TW laser.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Top schematic view of the experimental setup. Specific elements are labeled as P, linear polarizer; WP, quarter-wave plate; SF, spatial filter; L1, collimating lens; L2, focusing lens; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Systems of coordinates and notations for displacements and angles.

Fig. 3
Fig. 3

Transmission T of a glass evacuated capillary tube at z = 4.92   cm as a function of the normalized displacement δ R / R = δ x / R of the center of the beam in the focal plane for different θ inc = 0 , 5, 10, and 20 mrad; squares are for experimental results; solid lines are for calculations by Eqs. (B9, 20). R = 50 μ m , laser wavelength λ 0 = 0.63 μ m , w x = w y = 32 μ m , circular polarization.

Fig. 4
Fig. 4

Polar diagram r ( ϕ ) = 10 4 S R ( ϕ ) / ( I max F ( ξ ) d ξ ) of integrated transverse flux S R ( φ ) at z = 0.6 , 4.3, and 19.5 mm, normalized to integrated laser intensity at the entrance, calculated by Eq. (B2). (The distances z = 0.6 , 4.3, 19.5 mm correspond to maxima of S R ( φ ) d φ .) Laser radiation has parameters corresponding to Fig. 3, R = 50 μ m , θ inc = 0 ; δ x / R = 0 , 0.25, and 0.375 for solid, dashed, and dash-dotted lines, respectively.

Fig. 5
Fig. 5

Transmission calculated as a function of the normalized capillary length, for capillaries with different radii, R = 50 μ m (solid lines) and R = 100 μ m (dashed lines), and different conditions of laser pulse focusing: δ R = 0 and w x = w y (1), with a distorted transverse laser pulse shape w x / w y = 2.5 and δ R = 0 (2), and with a displacement of the focusing point from the capillary axis δ R / R = 0.5 and w x = w y (3). The laser pulse waist w = w x w y 2 / ( w x 2 + w y 2 ) is equal 0.64 R for the three cases, corresponding to the best matching condition; θ inc = 1.5   mrad . All other parameters are the same as in Fig. 3.

Fig. 6
Fig. 6

Transmission calculated as a function of the capillary length z for different radii and angles of incidence θ inc corresponding to a fixed value of the parameter θ inc [ mrad ] / R [ μ m ] = 2.8 . w x = w y = 0.64 R , δ R = 0 , λ 0 = 0.63 μ m .

Fig. 7
Fig. 7

Transverse distributions of intensity integrated over time, calculated from Eq. (B6), and normalized to their values at the entrance, at different distances z inside the capillary; R = 50 μ m , λ 0 = 0.8 μ m , w x = w y = 32.6 μ m , circular polarization, δ R = δ x = 20 μ m .

Fig. 8
Fig. 8

The same as in Fig. 7, but for δ R = 0 and w x = 14.9 μ m , w y = 29.5 μ m .

Fig. 9
Fig. 9

Transverse distributions of intensity integrated over time, calculated from Eq. (B6) at z = 15   mm inside a capillary of radius 50 μ m for different angles of incidence θ inc , δ R = 0 , and other parameters as in Fig. 7.

Fig. 10
Fig. 10

(a),(c) Experimental and (b),(d) theoretical transverse energy distributions normalized to its maximum at the distance z = 48.5   mm inside a glass capillary, for R = 50 μ m , λ 0 = 0.63 μ m , w x = w y = 32.6 μ m , circular polarization, and θ inc = 15   mrad . (a),(b) for zero displacement of focusing point from capillary center; (c),(d) for δ x / R = 0.4 .

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

E ̃ = 1 2 E e i ω 0 t + i k 0 z + c .c . ,     B ̃ = 1 2 B e i ω 0 t + i k 0 z + c .c . ,
E ( r , φ , z , t ) = l = L L e i l φ E l ( r , z , t ) ,
B ( r , φ , z , t ) = l = L L e i l φ B l ( r , z , t ) ,
ξ = k 0 ( z c t ) ,     ζ = k 0 z ,     ρ = k 0 r ,
[ Δ ρ l 2 ρ 2 + 2 i ζ + 2 2 ξ ζ ] { E z B z } l = 0 ,
2 i ζ { E φ B φ } l = i { ρ B z ρ E z } l l ρ { E z B z } l ,
[ 2 ρ 2 + ε 1 ] { E z B z } l = 0 ,
[ ε 1 ] { E φ B φ } l = i { ρ B z ε ρ E z } l .
{ E r B r } l = { ε 1 B φ E φ } l l ρ { ε 1 B z E z } l ,
E ( ξ ) = B ( ξ ) = 0 ,
E z , l ( ρ 0 ) ,     B z , l ( ρ 0 ) O ( ρ l ) ,
E z ρ = R 0 = E z ρ = R + 0 ,     B z ρ = R 0 = B z ρ = R + 0 ,
E ϕ / B z ρ = R 0 = μ B ,     B ϕ / E z ρ = R 0 = μ E ,
μ B = 1 / ε 1 ,     μ E = ε / ε 1 ,
{ E B } l = 0 , ± 1 , ± 2 , ( ζ 0 ) = σ = ± 1 n C ̃ l σ n ( ξ , ζ ) { E l σ n ( ρ ) B l σ n ( ρ ) } ,
[ 2 i ζ + 2 ζ ξ 2 k l σ n 2 ] C ̃ l σ n = 0.
C ̃ l σ n C l σ n X l σ n ( ξ , ζ ) exp ( i 2 0 ζ k l σ n 2 ( ζ ) d ζ ) ,
X l σ n = F ( ξ + 1 2 0 ζ k l σ n 2 ( ζ ) d ζ ) ,
k 0 1 n = ( u 1 , n / R ) ( 1 i μ B / R ) ,     k 01 n = ( u 1 , n / R ) ( 1 i μ E / R ) ,
k l σ n = ( u l σ , n / R ) ( 1 i μ + / R ) ,     l = ± 1 , ± 2 ,
{ E B } ( ζ = 0 ) = A max F ( ξ ) F ( r , φ ) σ = ± 1 e i σ φ { i σ } 1 + σ η 2 [ i e r + σ e φ ] ,
T ( z ) = Q ( z ) / Q ( z = 0 ) ,     Q ( z ) = W ( ξ , z ) d ξ ,
Q / z = R c 1 0 2 π S R ( z , φ ) d φ ,
F ( r , φ ) = exp [ ( X / w x ) 2 ( Y / w y ) 2 + i k 0   sin   θ inc ( X   cos   φ inc + Y   sin   φ inc ) ] ,
X = r   cos   φ δ x ,     Y = r   sin   φ δ y ,
E z , 01 n = B φ , 01 n = 0     ( index   01 n   stands   for   l = 0 , σ = 1 , n ) ,
B z , 01 n = { J 0 n ( ρ ) , ρ < R J 0 n ( R ) G B ( ρ ) , ρ R , }     J 0 n ( ρ ) u 1 , n R J 0 ( u 1 , n ρ / R ) ,
E φ , 01 n = { i J 1 ( u 1 , n ρ / R ) [ 1 + i μ B / R ] + J 0 n ( ρ ) μ B ρ / R , ρ < R i J 0 n ( R ) [ 1 ε ] 1 ρ G B ( ρ ) , ρ R , }
B z , 0 1 n = E φ , 0 1 n = 0     ( index   0 1 n   stands   for   l = 0 , σ = 1 , n ) ,
E z , 0 1 n = i × { J 0 n ( ρ ) , ρ < R J 0 n ( R ) G E ( ρ ) , ρ R , }
B φ , 0 1 n = { J 1 ( u 1 , n ρ / R ) [ 1 + i μ E / R ] i J 0 n ( ρ ) μ E ρ / R , ρ < R J 0 n ( R ) [ 1 ε ] 1 ρ G E ( ρ ) , ρ R . }
E z , l σ n = i σ × { J l n ( ρ ) , ρ < R J l n ( R ) G E ( ρ ) , ρ R , }     J l n ( ρ ) u l σ , n R J l ( u l σ , n ρ / R ) ,
B z , l σ n = { J l n ( ρ ) , ρ < R J l n ( R ) G B ( ρ ) , ρ R , }
E φ , l σ n = { J l σ ( u l σ , n ρ / R ) [ i σ l 1 μ u l σ , n 2 / R + ( l σ 1 ) μ + / R ] J l n ( ρ ) [ μ + ρ / R μ R / ρ ] , ρ < R i J l n ( R ) [ 1 ε ] 1 ρ G B ( ρ ) , ρ R , }
B φ , l σ n = { J l σ ( u l σ , n ρ / R ) [ 1 i ( l σ 1 ) μ + / R ] + i σ J l n ( ρ ) [ μ + ρ / R + μ R / ρ ] , ρ < R σ J l n ( R ) ε [ 1 ε ] 1 ρ G E ( ρ ) , ρ R . }
{ E r , l σ n B r , l σ n } = { ε 1 B φ , l σ n E φ , l σ n } ,     l = 0 , ± 1 , ± 2 , .
C 0 1 n = N 1 , n 1 0 1 y F 1 ( y ) J 1 ( u 1 , n y ) d y ,     C 01 n = η C 0 1 n ,
y r / R ,
C l σ n = 1 + σ η 2 N l σ , n 1 0 1 y F l σ ( y ) J l σ ( u l σ , n y ) d y ,
l = ± 1 , ± 2 , ,
F l ( r ) = 1 2 π 0 2 π e i l φ F ( r , φ ) d φ ,
N k , n = 0 1 y J k 2 ( u k , n y ) d y .
W ( ξ , z ) / z = 2 π R c 1 S r , 0 ( r = R + 0 , ξ , z ) ,
S r ( ρ = R ) = I max R 2 1 + η 2 [ Re { μ B } | Σ 0 t r + l e i l φ Σ l t r | 2 + Re { μ E } | Σ ̃ 0 t r + l e i l φ Σ ̃ l t r | 2 ] ,
Σ ̃ 0 t r = n C ̃ 0 1 n u 1 , n J 0 ( u 1 , n ) ,     Σ 0 t r = n C ̃ 01 n u 1 , n J 0 ( u 1 , n ) ,
Σ ̃ l t r = σ = ± 1 σ n C ̃ l σ n u l σ , n J l ( u l σ , n ) ,     Σ l t r = σ = ± 1 n C ̃ l σ n u l σ , n J l ( u l σ , n ) .
S r , 0 ( ρ = R ) = I max R 2 1 + η 2 [ Re { μ B } ( | Σ 0 t r | 2 + l | Σ l t r | 2 ) + Re { μ E } ( | Σ ̃ 0 t r | 2 + l | Σ ̃ l t r | 2 ) ] .
S r ( ρ = R ) = I max R 2 Re { μ + } | n C n X 11 n ( ξ , ζ ) exp ( i 2 0 ζ k 11 n 2 ( ζ ) d ζ ) u 0 , n J 1 ( u 0 , n ) | 2 ,
C n = [ 2 / J 1 2 ( u 0 , n ) ] 0 1 y F ( y ) J 0 ( u 0 , n y ) d y ,     y r / R .
| E | 2 ( ρ < R ) = A max 2 [ | Σ 0 ( ρ ) + l e i l φ Σ l ( ρ ) | 2 + | Σ ̃ 0 ( ρ ) + l e i l φ Σ ̃ l ( ρ ) | 2 ] ,
Σ ̃ 0 = n C ̃ 01 n J 1 ( u 1 , n ρ / R ) ,     Σ 0 = n C ̃ 0 1 n J 1 ( u 1 , n ρ / R ) ,
Σ ̃ l = σ = ± 1 σ n C ̃ l σ n J l σ ( u l σ , n ρ / R ) ,     Σ l = σ = ± 1 n C ̃ l σ n J l σ ( u l σ , n ρ / R ) .
| E | 0 2 ( ρ < R ) = A max 2 [ | Σ 0 ( ρ ) | 2 + l | Σ l ( ρ ) | 2 + | Σ ̃ 0 ( ρ ) | 2 + l | Σ ̃ l ( ρ ) | 2 ] .
W = 2 π I max R 2 c ( 1 + η 2 ) [ n N 1 , n [ | C ̃ 0 1 n | 2 + | C ̃ 01 n | 2 ] + 2 p 0 n [ | C ̃ p 1 n | 2 N p 1 , n + | C ̃ p 1 n | 2 N p + 1 , n ] ] .

Metrics