Abstract

A frequency-stabilized light source emitting at 556 nm is realized by frequency doubling a 1112 nm laser, which is phase locked to a fiber-based optical frequency comb. The 1112 nm laser is either an ytterbium (Yb)-doped distributed feedback fiber laser or a master-slave laser system that uses an external cavity diode laser as a master laser. We have achieved the continuous frequency stabilization of the light source over a 5 day period. With the light source, we have completed the second-stage magneto-optical trapping (MOT) of Yb atoms using the S10P31 intercombination transition. The temperature of the ultracold atoms in the MOT was 40μK when measured using the time-of-flight method, and this is sufficient for loading the atoms into an optical lattice. The fiber-based frequency comb is shown to be a useful tool for controlling the laser frequency in cold-atom experiments.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription