Abstract

Due to different boundary continuity conditions, electromagnetic waves with transverse-magnetic and transverse-electric polarizations respond differently when they encounter dielectric interfaces. Based on this mechanism, we propose a self-collimating polarization beam splitter (PBS) constructed on a polarization-insensitive self-collimation photonic crystal. The splitting is realized on a Mach–Zehnder interferometer (MZI), through which the two polarizations can be separated by 90° with low cross talk. Both polarizations are self-collimated to eliminate the diffraction loss during the propagation. Furthermore, the out-of-plane scattering loss is suppressed since the PBS is operated in the first band. The wavelength bandwidth of the MZI-based PBS reaches about 100 nm at 1550 nm. Finally, the influences of interfaces on the performance of the PBS are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
    [CrossRef]
  2. L. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004).
    [CrossRef] [PubMed]
  3. X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152–2154 (2005).
    [CrossRef] [PubMed]
  4. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  5. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006).
    [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [CrossRef]
  7. J. Witzens, M. Loncar, and A. Schere, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
    [CrossRef]
  8. L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
    [CrossRef]
  9. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004).
    [CrossRef] [PubMed]
  10. V. Zabelin, L. A. Dunbar, N. Le. Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007).
    [CrossRef] [PubMed]
  11. Y. Xu, X. Chen, S. Lan, Q. Dai, Q. Guo, and L. Wu, “Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry,” Opt. Express 17, 4903–4912 (2009).
    [CrossRef] [PubMed]
  12. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  13. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
    [CrossRef]
  14. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  15. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
    [CrossRef]
  16. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
    [CrossRef]
  17. D. Deng, “Nonparaxial propagation of radially polarized light beams,” J. Opt. Soc. Am. B 23, 1228–1234 (2006).
    [CrossRef]
  18. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).
  19. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
    [CrossRef] [PubMed]
  20. S.-G. Lee, J.-s. Choi, J.-E. Kim, H.-Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

V. Zabelin, L. A. Dunbar, N. Le. Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007).
[CrossRef] [PubMed]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

2006

2005

2004

2003

L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
[CrossRef]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

2002

J. Witzens, M. Loncar, and A. Schere, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

2001

1999

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

1996

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

1995

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152–2154 (2005).
[CrossRef] [PubMed]

Chen, A.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

Chen, C.

Chen, X.

Y. Xu, X. Chen, S. Lan, Q. Dai, Q. Guo, and L. Wu, “Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry,” Opt. Express 17, 4903–4912 (2009).
[CrossRef] [PubMed]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Choi, J. -s.

Chuyanov, V.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

Dai, Q.

Dalton, L. R.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

De La Rue, R. M.

Deng, D.

Dunbar, L. A.

Fan, S.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

Gallet, J. F.

Garner, S. M.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

Gaylord, T. K.

Gedney, S. D.

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

Grann, E. B.

Guo, Q.

Haus, H. A.

H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).

He, S.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152–2154 (2005).
[CrossRef] [PubMed]

Houdré, R.

Jiang, X.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jugessur, A.

Kawakamib, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kee, C. -S.

Kim, J. -E.

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kotlyar, M. V.

Krauss, T. F.

Lan, S.

Lee, S.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

Lee, S. -G.

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Loncar, M.

J. Witzens, M. Loncar, and A. Schere, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Mazilu, M.

McNab, S. J.

Moharam, M. G.

Murakowski, J.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

O’Faolain, L.

Park, H. -Y.

Park, W.

Pommet, D. A.

Prather, D. W.

Pustai, D. M.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Schere, A.

J. Witzens, M. Loncar, and A. Schere, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Schneider, G. J.

Schonbrun, E.

Sharkawy, A.

Shi, S.

Steier, W. H.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

Summers, C. J.

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Thomas, N. Le.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Venkataraman, S.

Vlasov, Y. A.

Witzens, J.

J. Witzens, M. Loncar, and A. Schere, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Wosinski, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Wu, L.

Wu, Q.

Xu, Y.

Yamashita, T.

Yao, P.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Yu, X.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

Zabelin, V.

Zhang, J.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Zhao, D.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Appl. Phys. Lett.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Witzens, M. Loncar, and A. Schere, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999).
[CrossRef]

IEEE Trans. Antennas Propag.

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The transmission and reflection of both polarizations when light travels through a dielectric-air-dielectric sandwich structure at an angle of 45°. The red solid (black dashed) color represents the TM (TE) polarization in the whole article unless specified. Open shapes denote the transmission and bulk ones indicate the reflection. The inset is the sketch of the dielectric-air-dielectric (in gray-white-gray) sandwich structure.

Fig. 2
Fig. 2

(a) The EFCs for the pill-void square lattice with h 1 = 0.2 a , h 2 = 0.6 a , where a is the lattice constant. As can be seen, the propagation directions of the energy, which are perpendicular to the EFCs, are along the Γ M and Γ M 2 directions in PhCs when the divergence of the incident beams is within 12° (i.e., ±6°) and the frequency is among 0.18–0.192 ( × 2 π c / a ) (shown in yellow bulk arrows). (b) The sketch of the MZI-based PBS. The TM-polarized beam mainly transmits through the two air slits along the red solid arrows. At slit 1, The TE-polarized beam is partially reflected ( R 1 , in black dashed arrow) and transmitted ( T 1 , in black dotted arrow). At slit 2, the reflected and transmitted part is partially reflected ( R 2 , R 2 ) and transmitted ( T 2 , T 2 ) again. ( Φ r 2 Φ t 2 ) represents the PD between the two beams reflected and transmitted by slit 2 at the upper port, while ( Φ r 2 Φ t 2 ) represents that between those reflected and transmitted at the right port. The green lines represent the positions of the power monitor.

Fig. 3
Fig. 3

The PD induced by (a) slit 1 and (b) slit 2. The two insets show the configuration of the two air slits. The transmission and reflection of the incident beam along the Γ M direction are shown in (c) and those along the Γ M 2 direction are shown in (d). Note that R 2 and T 2 are the same as R 1 and T 1 as they are all normalized to their own incident directions (along the Γ M direction) of the slit.

Fig. 4
Fig. 4

(a) The quantitative outputs of both polarizations for the upper and right ports, which are normalized to the power at the position of the green dashed line in Fig. 2b. The solid (dashed) lines represent the output at the upper (right) port. (b) The H-field and (c) E-field distributions at a frequency of 0.188 × 2 π c / a for TE and TM polarizations. The input interface, reflecting mirrors, and air slits are outlined by the white dashed lines.

Fig. 5
Fig. 5

(a) Sketch map of the finite PBS. The dashed squares highlight the position of the impedance matching layers and their details are shown in the insets. Dashed squares a and b are the same. r i stands for the radius of the outmost semicircles and d i denotes the distance between the outmost semicircles and the second outmost pill-voids. The green lines represent the positions of the power monitor. (b) The quantitative outputs of both polarizations for a finite PBS, which are normalized to the input sources. The solid (dashed) lines represent the output at the upper (right) port, respectively.

Fig. 6
Fig. 6

The dependence of the output of the MZI on the position shift of the slit relative to the holes’ center. During the simulation, the position of one slit is scanned while another one fixed. The normalized frequency used in the simulation is 0.186 × 2 π c / a . The inset denotes the details of the displacement of the slit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I upper = A 2 ( 1 R 1 R 2 + R 1 R 2 + R 1 R 2 + 2 T 1 T 2 R 1 R 2   cos ( ( ϕ r 1 ϕ t 1 ) + ( ϕ r 2 ϕ t 2 ) ) ) ,
I right = A 2 ( R 1 + R 2 R 1 R 2 R 1 R 2 + 2 T 1 T 2 R 1 R 2 cos ( ( ϕ r 1 ϕ t 1 ) ( ϕ r 2 ϕ t 2 ) ) ) ,

Metrics