Abstract

The use of quantum resources—squeezed-vacuum injection (SVI) and noise-free phase-sensitive amplification (PSA)—at the receiver of a soft-aperture homodyne-detection LAser Detection And Ranging (LADAR) system is shown to afford significant improvement in the receiver’s spatial resolution. This improvement originates from the potential for SVI to ameliorate the loss of high-spatial-frequency information about a target or target complex that is due to soft-aperture attenuation in the LADAR’s entrance pupil, and the value of PSA in realizing that potential despite inefficiency in the LADAR’s homodyne detection system. We show this improvement quantitatively by calculating lower error rates—in comparison with those of a standard homodyne detection system—for a one-target versus two-target hypothesis test. We also exhibit the effective signal-to-noise ratio (SNR) improvement provided by SVI and PSA in simulated imagery.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription