Abstract

Indistinguishable photons play a key role in quantum optical information technologies. We characterize the output of an ultrabright photon-pair source using multiparticle tomography [ R. B. A. Adamson et al., Phys. Rev. Lett. 98, 043601 (2007) ] and separately identify coherent errors, decoherence, and distinguishability. We demonstrate generation of high-quality indistinguishable pairs and two-photon polarization-entangled states with 99% fidelity. Using such a state we perform a super-resolving angular measurement with 90% visibility.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Y. Ou and Y. J. Lu, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. Lett. 83, 2556-2559 (2000).
    [Crossref]
  2. Y. J. Lu, R. L. Campbell, and Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
    [Crossref] [PubMed]
  3. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
    [Crossref]
  4. C. E. Kuklewicz, “Ultrabright source of polarization-entangled photons from cavity-enhanced down-conversion,” Ph.D. thesis (Massachusetts Institute of Technology, 2005).
  5. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
    [Crossref] [PubMed]
  6. M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91, 191104 (2007).
    [Crossref]
  7. F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145-18151 (2008).
    [Crossref] [PubMed]
  8. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
    [Crossref] [PubMed]
  9. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987).
    [Crossref] [PubMed]
  10. R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98, 043601 (2007).
    [Crossref] [PubMed]
  11. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994).
    [Crossref] [PubMed]
  12. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  13. R. B. A. Adamson, P. S. Turner, M. W. Mitchell, and A. M. Steinberg, “Detecting hidden differences via permutation symmetries,” Phys. Rev. A 78, 033832 (2008).
    [Crossref]
  14. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161-164 (2004).
    [Crossref] [PubMed]
  15. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012-1014 (2009).
    [Crossref] [PubMed]

2009 (1)

2008 (3)

R. B. A. Adamson, P. S. Turner, M. W. Mitchell, and A. M. Steinberg, “Detecting hidden differences via permutation symmetries,” Phys. Rev. A 78, 033832 (2008).
[Crossref]

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145-18151 (2008).
[Crossref] [PubMed]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

2007 (2)

R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98, 043601 (2007).
[Crossref] [PubMed]

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91, 191104 (2007).
[Crossref]

2006 (1)

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

2004 (2)

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161-164 (2004).
[Crossref] [PubMed]

2003 (1)

Y. J. Lu, R. L. Campbell, and Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[Crossref] [PubMed]

2001 (1)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

2000 (1)

Z. Y. Ou and Y. J. Lu, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. Lett. 83, 2556-2559 (2000).
[Crossref]

1994 (1)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987).
[Crossref] [PubMed]

Abad, M.

Adamson, R. B. A.

R. B. A. Adamson, P. S. Turner, M. W. Mitchell, and A. M. Steinberg, “Detecting hidden differences via permutation symmetries,” Phys. Rev. A 78, 033832 (2008).
[Crossref]

R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98, 043601 (2007).
[Crossref] [PubMed]

Bao, X.-H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Benson, O.

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91, 191104 (2007).
[Crossref]

Campbell, R. L.

Y. J. Lu, R. L. Campbell, and Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[Crossref] [PubMed]

Cerè, A.

Chen, Z.-B.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Herzog, U.

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91, 191104 (2007).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987).
[Crossref] [PubMed]

Horikiri, T.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994).
[Crossref] [PubMed]

Kobayashi, T.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

Kuklewicz, C. E.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

C. E. Kuklewicz, “Ultrabright source of polarization-entangled photons from cavity-enhanced down-conversion,” Ph.D. thesis (Massachusetts Institute of Technology, 2005).

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Lu, Y. J.

Y. J. Lu, R. L. Campbell, and Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[Crossref] [PubMed]

Z. Y. Ou and Y. J. Lu, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. Lett. 83, 2556-2559 (2000).
[Crossref]

Lundeen, J. S.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161-164 (2004).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987).
[Crossref] [PubMed]

Mitchell, M. W.

A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012-1014 (2009).
[Crossref] [PubMed]

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145-18151 (2008).
[Crossref] [PubMed]

R. B. A. Adamson, P. S. Turner, M. W. Mitchell, and A. M. Steinberg, “Detecting hidden differences via permutation symmetries,” Phys. Rev. A 78, 033832 (2008).
[Crossref]

R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98, 043601 (2007).
[Crossref] [PubMed]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161-164 (2004).
[Crossref] [PubMed]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Ou, Z. Y.

Y. J. Lu, R. L. Campbell, and Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[Crossref] [PubMed]

Z. Y. Ou and Y. J. Lu, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. Lett. 83, 2556-2559 (2000).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987).
[Crossref] [PubMed]

Pan, J.-W.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Parigi, V.

Predojevic, A.

Qian, Y.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Rubin, M. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994).
[Crossref] [PubMed]

Scholz, M.

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91, 191104 (2007).
[Crossref]

Sergienko, A. V.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994).
[Crossref] [PubMed]

Shalm, L. K.

R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98, 043601 (2007).
[Crossref] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

Shih, Y. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994).
[Crossref] [PubMed]

Steinberg, A. M.

R. B. A. Adamson, P. S. Turner, M. W. Mitchell, and A. M. Steinberg, “Detecting hidden differences via permutation symmetries,” Phys. Rev. A 78, 033832 (2008).
[Crossref]

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145-18151 (2008).
[Crossref] [PubMed]

R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98, 043601 (2007).
[Crossref] [PubMed]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161-164 (2004).
[Crossref] [PubMed]

Turner, P. S.

R. B. A. Adamson, P. S. Turner, M. W. Mitchell, and A. M. Steinberg, “Detecting hidden differences via permutation symmetries,” Phys. Rev. A 78, 033832 (2008).
[Crossref]

Wang, H.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Wolfgramm, F.

Wong, F. N. C.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

Xing, X.

Yang, J.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Yang, T.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Zhang, H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91, 191104 (2007).
[Crossref]

Nature (1)

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161-164 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (4)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994).
[Crossref] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

R. B. A. Adamson, P. S. Turner, M. W. Mitchell, and A. M. Steinberg, “Detecting hidden differences via permutation symmetries,” Phys. Rev. A 78, 033832 (2008).
[Crossref]

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

Phys. Rev. Lett. (6)

Z. Y. Ou and Y. J. Lu, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. Lett. 83, 2556-2559 (2000).
[Crossref]

Y. J. Lu, R. L. Campbell, and Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[Crossref] [PubMed]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987).
[Crossref] [PubMed]

R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98, 043601 (2007).
[Crossref] [PubMed]

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

Other (1)

C. E. Kuklewicz, “Ultrabright source of polarization-entangled photons from cavity-enhanced down-conversion,” Ph.D. thesis (Massachusetts Institute of Technology, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. SHG, second-harmonic generation cavity; PPKTP, phase-matched nonlinear crystal; KTP, compensating crystal; M1-4, cavity mirrors; PBS, polarizing beamsplitter; HWP, half-wave plate; QWP, quarter-wave plate; SMF, single-mode fiber; PD, photodiode; FBS, fiber beamsplitter; SPCM, single-photon counting module.

Fig. 2
Fig. 2

Hong–Ou–Mandel effect. Experimental data and triangular fit function. Labelled points indicate locations of tomographic reconstructions in Fig. 3.

Fig. 3
Fig. 3

Reconstructed polarization density matrices for (a) center of HOM dip, (b) edge of HOM dip, (c) outside of HOM dip (corresponding to points in Fig. 2), (d) center of dip, but with system tuned to a different frequency.

Fig. 4
Fig. 4

(a) Real and (b) imaginary part of the polarization density matrix of the pair-photon state transformed to a two-photon NOON state.

Fig. 5
Fig. 5

(a) Standard phase measurement. Normalized singles detection at the transmitted port of PBS2. In this measurement only the H polarized part of the pair-photon state was sent to the analyzer. (b) Super-resolving phase measurement. Normalized coincidence detection between reflected and transmitted port of PBS2 for a NOON state input. The shorter period of the coincidence-counts oscillations indicates super-resolution.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ = ( ( ρ S ) ( ρ A ) ) ,
Π α , β = ( 1 2 sin 2 2 θ 1 2 2 e i φ sin 4 θ 1 2 e 2 i φ sin 2 2 θ 0 1 2 2 e i φ sin 4 θ cos 2 2 θ 1 2 2 e i φ sin 4 θ 0 1 2 e 2 i φ sin 2 2 θ 1 2 2 e i φ sin 4 θ 1 2 sin 2 2 θ 0 0 0 0 1 ) .
P coinc = ρ 44 + 1 2 ( ρ 11 + ρ 33 ) Re [ e 2 i φ ρ 13 ] .
P coinc ( delay ) = 1 2 Re [ e 2 i φ ρ 13 ] .
V HOM P coinc ( delay ) P coinc ( zero delay ) P coinc ( delay ) + P coinc ( zero delay ) = ρ 22 ρ 44 2 ( ρ 22 ρ 44 ) 4 Re [ e 2 i φ ρ 13 ] .
V INT 1 ρ 44 1 + ρ 44 .

Metrics