Abstract

We demonstrate the potentialities of a deformable mirror for closed-loop control of a two-photon path-entangled state subject to phase fluctuations. A custom-made membrane mirror is used to set a relative phase shift between the arms of an interferometric apparatus. The control algorithm estimates the phase of the quantum state by measurements of the coincidence events at the output ports of the interferometer and uses the measurement results to provide a feedback signal to the deformable mirror. Stabilization of the coincidence rate to within 1.5 standard deviation of the Poissonian noise is demonstrated over 2000 s.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Hartmann, “Bemerkungen ÿber den bau und die justirung von spektrographen,” Z. Instrumentenkd. 20, 47 (1900).
  2. R. Tyson, Introduction to Adaptive Optics (SPIE, 2000), Vol. TT41.
    [Crossref]
  3. E. Zeek, R. Bartels, M. M. Murnane, H. C.Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
    [Crossref]
  4. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
    [Crossref] [PubMed]
  5. P. Knutsson and M. Owner-Petersen, “Emulation of dual-conjugate adaptive optics on an 8-m class telescope,” Opt. Express 11, 2231–2237 (2003).
    [Crossref] [PubMed]
  6. A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
    [Crossref]
  7. C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
    [Crossref] [PubMed]
  8. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
    [Crossref] [PubMed]
  9. A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
    [Crossref] [PubMed]
  10. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
    [Crossref] [PubMed]
  11. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
    [Crossref]
  12. T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
    [Crossref]
  13. J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
    [Crossref]
  14. H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
    [Crossref] [PubMed]
  15. R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inf. Comput. 4, 93–101 (2004).
  16. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
    [Crossref] [PubMed]
  17. G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
    [Crossref] [PubMed]
  18. K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
    [Crossref] [PubMed]
  19. G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
    [Crossref] [PubMed]
  20. G. Vallone, G. Donati, F. D. Martini, and P. Mataloni, “Polarization entanglement with graded-index lenses,” Appl. Phys. Lett. 95, 181110 (2009).
    [Crossref]
  21. J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
    [Crossref]
  22. S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
    [Crossref]
  23. E. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
    [Crossref] [PubMed]
  24. E. Clafin and N. Bareket, “Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,” J. Opt. Soc. Am. A 3, 1833–1839 (1986).
    [Crossref]
  25. S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

2009 (2)

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

G. Vallone, G. Donati, F. D. Martini, and P. Mataloni, “Polarization entanglement with graded-index lenses,” Appl. Phys. Lett. 95, 181110 (2009).
[Crossref]

2008 (5)

J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
[Crossref]

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[Crossref] [PubMed]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
[Crossref] [PubMed]

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

2007 (4)

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[Crossref]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
[Crossref] [PubMed]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

2006 (2)

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

2004 (1)

R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inf. Comput. 4, 93–101 (2004).

2003 (2)

2002 (1)

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
[Crossref]

2001 (1)

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

2000 (2)

1990 (1)

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[Crossref] [PubMed]

1986 (1)

1900 (1)

J. A. Hartmann, “Bemerkungen ÿber den bau und die justirung von spektrographen,” Z. Instrumentenkd. 20, 47 (1900).

Abouraddy, A. F.

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
[Crossref]

Acin, A.

R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inf. Comput. 4, 93–101 (2004).

Artal, P.

Backus, S.

Barbieri, M.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

Bareket, N.

Barreiro, J. T.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[Crossref]

Bartels, R.

Bechmann-Pasquinucci, H.

H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
[Crossref] [PubMed]

Berardi, V.

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
[Crossref] [PubMed]

Bonato, C.

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[Crossref] [PubMed]

Bonora, S.

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[Crossref] [PubMed]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
[Crossref] [PubMed]

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

Brida, D.

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
[Crossref] [PubMed]

S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

Briegel, H. J.

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

Capraro, I.

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

Cerullo, G.

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
[Crossref] [PubMed]

S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

Chen, K.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Chen, S.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Chen, Y.-A.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Chiuri, A.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

Cirmi, G.

Clafin, E.

De Martini, F.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
[Crossref] [PubMed]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

de Riedmatten, H.

J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
[Crossref]

Donati, G.

G. Vallone, G. Donati, F. D. Martini, and P. Mataloni, “Polarization entanglement with graded-index lenses,” Appl. Phys. Lett. 95, 181110 (2009).
[Crossref]

Fernandez, E.

Gisin, N.

J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
[Crossref]

R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inf. Comput. 4, 93–101 (2004).

Goebel, A.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Hartmann, J. A.

J. A. Hartmann, “Bemerkungen ÿber den bau und die justirung von spektrographen,” Z. Instrumentenkd. 20, 47 (1900).

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Kapteyn, H. C.

Knutsson, P.

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Kwiat, P. G.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[Crossref]

Li, C.-M.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Mair, A.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Manzoni, C.

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
[Crossref] [PubMed]

S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

Martini, F. D.

G. Vallone, G. Donati, F. D. Martini, and P. Mataloni, “Polarization entanglement with graded-index lenses,” Appl. Phys. Lett. 95, 181110 (2009).
[Crossref]

Mataloni, P.

G. Vallone, G. Donati, F. D. Martini, and P. Mataloni, “Polarization entanglement with graded-index lenses,” Appl. Phys. Lett. 95, 181110 (2009).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
[Crossref] [PubMed]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

Minár, J. c. v.

J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
[Crossref]

Murnane, M. M.

Owner-Petersen, M.

Pan, J.-W.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Peres, A.

H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
[Crossref] [PubMed]

Poletto, L.

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

Pomarico, E.

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
[Crossref] [PubMed]

Rarity, J. G.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[Crossref] [PubMed]

Raussendorf, R.

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

Romanin, M.

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

Rossi, A.

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

Saleh, B. E. A.

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[Crossref] [PubMed]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
[Crossref]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Sergienko, A. V.

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[Crossref] [PubMed]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
[Crossref]

Silvestri, S. D.

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
[Crossref] [PubMed]

S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

Simon, C.

J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
[Crossref]

Stone, P. R.

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
[Crossref]

Tapster, P. R.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[Crossref] [PubMed]

Teich, M. C.

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
[Crossref]

Thew, R.

R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inf. Comput. 4, 93–101 (2004).

Trestino, C.

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

Tyson, R.

R. Tyson, Introduction to Adaptive Optics (SPIE, 2000), Vol. TT41.
[Crossref]

Vallone, G.

G. Vallone, G. Donati, F. D. Martini, and P. Mataloni, “Polarization entanglement with graded-index lenses,” Appl. Phys. Lett. 95, 181110 (2009).
[Crossref]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
[Crossref] [PubMed]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

Vdovin, G.

Villoresi, P.

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741 –743 (2008).
[Crossref] [PubMed]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[Crossref] [PubMed]

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

Wei, T.-C.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[Crossref]

Weinfurter, H.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Zbinden, H.

J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
[Crossref]

R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inf. Comput. 4, 93–101 (2004).

Zeek, E.

Zhang, Q.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. Vallone, G. Donati, F. D. Martini, and P. Mataloni, “Polarization entanglement with graded-index lenses,” Appl. Phys. Lett. 95, 181110 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Phys. (1)

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (3)

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[Crossref]

J. c. v. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A 77, 052325 (2008).
[Crossref]

Phys. Rev. Lett. (10)

H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
[Crossref] [PubMed]

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
[Crossref] [PubMed]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett. 93, 213903 (2002).
[Crossref]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[Crossref] [PubMed]

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[Crossref] [PubMed]

A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009).
[Crossref] [PubMed]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Quantum Inf. Comput. (1)

R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inf. Comput. 4, 93–101 (2004).

Rev. Sci. Instrum. (1)

S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, “Wave front active control by a digital-signal-processor-driven deformable membrane mirror,” Rev. Sci. Instrum. 77, 093102 (2006).
[Crossref]

Z. Instrumentenkd. (1)

J. A. Hartmann, “Bemerkungen ÿber den bau und die justirung von spektrographen,” Z. Instrumentenkd. 20, 47 (1900).

Other (2)

R. Tyson, Introduction to Adaptive Optics (SPIE, 2000), Vol. TT41.
[Crossref]

S. Bonora, D. Brida, C. Manzoni, S. D. Silvestri, G. Cerullo, and P. Villoresi, “Femtosecond nir pulse shaping with double side actuated deformable mirror,” to be published in Adaptive Optics for Industry and Medicine (SPIE).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. The SPDC source consists of a BBO Type I crystal pumped by a UV laser beam. The parametric radiation, given by four k optical modes, is collected by a corresponding number of integrated systems of GRIN lenses and single mode fibers and injected into a two-arm interferometer. Polarization restoration of the photons is performed by proper λ 4 and λ 2 wave plate sets after fiber transmission. For each photon, the right ( | r ) mode is spatially matched on the BS with the left ( | l ) mode. A translation stage allows fine adjustment of the left optical paths Δ x 1 to obtain temporal indistinguishability (and thus interference) between the modes. The deformable mirror is placed on the right mode side and allows changing the state phase. Two single photon detectors are placed after two horizontal (Glan–Taylor) polarizers at the output ports of the BS, one on the A and the other on the B side.

Fig. 2
Fig. 2

(left) Coincidence counts in interference conditions detected by the interferometric setup enclosed in a thermally isolated box and when no phase control is activated. Each experimental point represents the number of detected coincidences in 2  s . The coincidence rate shows temperature fluctuations within a time scale of the order of hundreds of seconds. (right) Coincidences measured in condition of no interference. Since the counts follow a Poissonian statistic, the variation shown in the left picture cannot arise from pump power instabilities.

Fig. 3
Fig. 3

Scheme of the deformable mirror.

Fig. 4
Fig. 4

Measurements of the plot of the cross section X - X of the membrane for four different values of relative displacement. The flat portions of the membrane used for phase shifting of the two beams are shown with thick lines.The measurement was carried out with an interferometric technique.

Fig. 5
Fig. 5

Mirror calibration. Measurement of coincidence counts as a function of mirror deformation. This allows us to calibrate the deformation in terms of the state phase. In the graph each step corresponds to a π 4 phase shift.

Fig. 6
Fig. 6

Coincidence counts with activated deformable mirror. The first point represents the initial random phase. The optimization algorithm rapidly controls the phase state to maximize the coincidences and to keep the phase constant to φ = 0 .

Fig. 7
Fig. 7

Discrete Fourier transform of the data shown in Figs. 2, 6. The Fourier components are normalized such that the sum of their squares is equal to 1. Except for the constant component at 0 Hz frequency, the frequency components below 2 mHz (see inset) are filtered out by the action of the deformable mirror.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| ψ ( φ ) = 1 2 ( | l A | r B e i φ | r A | l B ) ,
{ | l j 1 2 ( | l j + i | r j ) | r j 1 2 ( | r j + i | l j ) } j = A , B ,
| ψ ( φ ) = 1 2 [ 1 + e i φ 2 ( | l A | r B | r A | l B ) + i 1 e i φ 2 ( | l A | l B + | r A | r B ) ] ,
C ( φ ) = N 0 τ 4 ( 1 + cos φ ) = N 0 τ 2 cos 2 φ 2 ,
C ( t ) = N 0 2 t τ 2 t + τ 2 d t cos 2 [ φ ( t ) 2 ] .
C = C 0 [ 1 + cos φ e σ 2 2 ] .
C = N 0 τ 2 d Ω C ̃ ( Ω ) H τ , t ( Ω ) ,
M ( x , y ) = 1 T p ( x , y ) ,
p ( x , y ) = ε 0 2 ( V ( x , y ) h ) 2 ,

Metrics