Abstract

We show that there is a trade-off between the useful key distribution bit rate and the total length of a deployed fiber in tree-type passive optical networks (PONs) for Bennet and Brassard 1984 protocol (BB84) quantum key distribution applications. A two stage splitting architecture where one splitting is carried in the central office and a second one in the outside plant and a figure of merit to account for the trade-off are proposed. We find that there is an optimum solution for the splitting ratios of both stages in cases of photon number splitting attacks and decoy state transmission. We then analyze the effects of the different relevant physical parameters of the PON on the optimum solution.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wiesner, “Conjugate coding,” SIGACT News 15, 78–88 (1983).
    [CrossRef]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  4. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
    [CrossRef]
  5. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
    [CrossRef]
  6. P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–635 (1993).
    [CrossRef]
  7. P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994).
    [CrossRef]
  8. P. D. Townsend, “Quantum cryptography on optical fiber networks,” Opt. Fiber Technol. 4, 345–370 (1998).
    [CrossRef]
  9. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
    [CrossRef] [PubMed]
  10. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
    [CrossRef]
  11. M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks,” Phys. Rev. A 77, 052321 (2008).
    [CrossRef]
  12. J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999).
    [CrossRef]
  13. J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999).
    [CrossRef]
  14. O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
    [CrossRef]
  15. P. D. Townsend, “Quantum cryptography on multi-user optical networks,” Nature 385, 47–49 (1997).
    [CrossRef]
  16. P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
    [CrossRef]
  17. D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
  18. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
    [CrossRef]
  19. R. E. Wagner, “Fiber based broadband access technology and deployment,” in Optical Fiber Telecommunications, Vol. V.B of Systems and Networks, I.P.Kaminow, T.Li, and A.E.Willner, eds. (Academic, 2008).

2009

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

2008

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks,” Phys. Rev. A 77, 052321 (2008).
[CrossRef]

2005

P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

2004

D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

2003

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

2002

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

1999

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999).
[CrossRef]

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999).
[CrossRef]

1998

P. D. Townsend, “Quantum cryptography on optical fiber networks,” Opt. Fiber Technol. 4, 345–370 (1998).
[CrossRef]

1997

P. D. Townsend, “Quantum cryptography on multi-user optical networks,” Nature 385, 47–49 (1997).
[CrossRef]

1994

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994).
[CrossRef]

1993

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

1992

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

1983

S. Wiesner, “Conjugate coding,” SIGACT News 15, 78–88 (1983).
[CrossRef]

1982

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Beal, A. C.

P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
[CrossRef]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Blow, K. J.

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994).
[CrossRef]

Brassard, G.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Cova, S.

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994).
[CrossRef]

Curty, M.

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks,” Phys. Rev. A 77, 052321 (2008).
[CrossRef]

Diamanti, E.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

Donkor, E.

P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
[CrossRef]

Dusek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Fejer, M. M.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Goedgebuer, J. P.

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999).
[CrossRef]

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999).
[CrossRef]

Gottesman, D.

D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Guerreau, O.

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Kumavor, P. D.

P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
[CrossRef]

Langrock, C.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

Lo, H. K.

D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Lutkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Malassenet, F. J.

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

Mazurenko, Y.

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999).
[CrossRef]

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999).
[CrossRef]

Mérolla, J. -M.

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999).
[CrossRef]

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999).
[CrossRef]

Moroder, T.

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks,” Phys. Rev. A 77, 052321 (2008).
[CrossRef]

Patois, F.

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Phoenix, D. J. D.

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994).
[CrossRef]

Porte, H.

Preskill, J.

D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Rarity, J. G.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

Rhodes, W. T.

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999).
[CrossRef]

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Soujaeff, A.

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

Takesue, H.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

Tamaki, K.

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks,” Phys. Rev. A 77, 052321 (2008).
[CrossRef]

Tapster, P. R.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Townsend, P. D.

P. D. Townsend, “Quantum cryptography on optical fiber networks,” Opt. Fiber Technol. 4, 345–370 (1998).
[CrossRef]

P. D. Townsend, “Quantum cryptography on multi-user optical networks,” Nature 385, 47–49 (1997).
[CrossRef]

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994).
[CrossRef]

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

Wagner, R. E.

R. E. Wagner, “Fiber based broadband access technology and deployment,” in Optical Fiber Telecommunications, Vol. V.B of Systems and Networks, I.P.Kaminow, T.Li, and A.E.Willner, eds. (Academic, 2008).

Waks, E.

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Wang, B. C.

P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
[CrossRef]

Wiesner, S.

S. Wiesner, “Conjugate coding,” SIGACT News 15, 78–88 (1983).
[CrossRef]

Wootters, W. K.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Yamamoto, Y.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Yelin, S.

P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
[CrossRef]

Zbiden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zurek, W. H.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Electron. Lett.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994).
[CrossRef]

IEEE J. Lightwave Technol.

P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

J. Cryptology

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Nature

P. D. Townsend, “Quantum cryptography on multi-user optical networks,” Nature 385, 47–49 (1997).
[CrossRef]

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

New J. Phys.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005).
[CrossRef]

Opt. Fiber Technol.

P. D. Townsend, “Quantum cryptography on optical fiber networks,” Opt. Fiber Technol. 4, 345–370 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks,” Phys. Rev. A 77, 052321 (2008).
[CrossRef]

Phys. Rev. Lett.

J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Quantum Inf. Comput.

D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

Rev. Mod. Phys.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

SIGACT News

S. Wiesner, “Conjugate coding,” SIGACT News 15, 78–88 (1983).
[CrossRef]

Other

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

R. E. Wagner, “Fiber based broadband access technology and deployment,” in Optical Fiber Telecommunications, Vol. V.B of Systems and Networks, I.P.Kaminow, T.Li, and A.E.Willner, eds. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Two tree-PON configurations for BB84 QKD. In the upper configuration the 1 × N splitter affects the end-to-end power transmission (and the QBER) between Alice and Bob i but minimum fiber resources need to be deployed. In the lower configuration the 1 × N splitter does not affect the QBER but maximum fiber resources need to be deployed.

Fig. 2
Fig. 2

Proposed two-splitting-stage PON.

Fig. 3
Fig. 3

Evolution of the FOM in terms of log 2 ( N 1 ) , for a PON serving: (a) 16, (b) 32, (c) 64, and (d) 128 users.

Fig. 4
Fig. 4

Evolution of the optimum value of log 2 ( N 1 ) in terms of L 1 , for a PON serving: 16, 32, 64, and 128 users.

Fig. 5
Fig. 5

Computed values for Q (upper) and R (lower) versus L 1 , for the case where the number of users is 64. Curves are shown for d B = 10 5 and 10 4 .

Fig. 6
Fig. 6

Evolution of the optimum value of log 2 ( N 1 ) (upper) and R (lower) in terms of L 1 , for different values of μ. The number of users is 64.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T L = e α ( L 1 + L 2 ) N 2 = T F N 2 = N 1 T F N ,
L T = N 1 L 1 + N L 2 .
FOM = R L T .
R R s [ e μ ( 1 h ( Q ) ) h ( Q ) ] ,
FOM = e μ [ 1 h ( Q ) ] h ( Q ) N 1 L 1 + N L 2 ,
Q ( N 1 ) = μ η N 1 T F ( 1 V ) + N d B 2 μ η N 1 T F = 1 2 ( 1 V ) + d B 2 μ η T F N N 1 .
FOM N 1 = 0 N d B ( N 1 L 1 + N L 2 ) ( 1 + e μ ) 2 μ η T F l n ( Q ( N 1 ) ) + N 1 2 L 1 [ e μ l n ( 2 ) + ( 1 + e μ ) ( Q ( N 1 ) l n ( Q ( N 1 ) ) Q ( N 1 ) ) ] = 0.

Metrics