Abstract

The impact of third-order nonlinearities including self-phase modulation and two-photon absorption on the efficiency of the second-harmonic generation is numerically investigated using the split-step Fourier method in phase-matched Bragg reflection waveguides. Also using the same technique, the adverse effects of group velocity mismatch and group velocity dispersion of the interacting frequencies on the efficiency of the nonlinear process are examined and contrasted for optimal sample design. Using an optimized structure, we report efficient femtosecond second-harmonic generation in monolithic AlGaAs Bragg reflection waveguides for a type II nonlinear interaction. For a 190 fs pulsed pump around 1555 nm with an average power of 3.3 mW, a peak second-harmonic power of 25.5μW is measured in a sample with a length of 1.1 mm. The normalized conversion efficiency of the process is estimated to be 2.0×104%W1cm2. Pump depletion is clearly observed when operating at the phase-matching wavelength.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
    [CrossRef]
  2. M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
    [CrossRef]
  3. K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
    [CrossRef]
  4. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
    [CrossRef]
  5. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides,” Opt. Express 13, 10742–10748 (2005).
    [CrossRef] [PubMed]
  6. K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
    [CrossRef]
  7. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
    [CrossRef] [PubMed]
  8. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
    [CrossRef] [PubMed]
  9. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
    [CrossRef]
  10. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
    [CrossRef]
  11. A. Galvanauskas, J. Webjorn, A. Krotkus, and G. Arvidsson, “Autocorrelation measurement of picosecond laser-diode pulses by means of quasiphase-matching LiNbO3 channel waveguides,” Electron. Lett. 27, 738–740 (1991).
    [CrossRef]
  12. T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
    [CrossRef]
  13. S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
    [CrossRef]
  14. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  16. P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
    [CrossRef]
  17. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generation for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
    [CrossRef] [PubMed]
  18. M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
    [CrossRef]
  19. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  20. R. S. Grant, “Effective non-linear coefficients of optical waveguide,” Opt. Quantum Electron. 28, 1161–1173 (1996).
    [CrossRef]
  21. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off,” J. Opt. Soc. Am. B 19, 839–848 (2002).
    [CrossRef]
  22. J. P. Xie, J. Huang, and M. M. Fejer, “Narrow-linewidth near-degenerate optical parametric generation achieved with quasi-group-velocity-matching in lithium niobate waveguides,” Opt. Lett. 31, 2190–2192 (2006).
    [CrossRef] [PubMed]
  23. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, “Group-velocity-matched noncollinear second-harmonic generation in quasi-phase matching,” J. Opt. Soc. Am. B 22, 1283–1289 (2005).
    [CrossRef]
  24. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984).
    [CrossRef]
  25. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  26. A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33, 2650–2652 (2008).
    [CrossRef] [PubMed]
  27. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
    [CrossRef] [PubMed]
  28. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
    [CrossRef]
  29. K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. Venugopal Rao, and M. Ebrahimzadeh, “Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing,” Opt. Lett. 28, 911–913 (2003).
    [CrossRef] [PubMed]

2010 (1)

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

2009 (3)

P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33, 2650–2652 (2008).
[CrossRef] [PubMed]

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

2007 (2)

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef] [PubMed]

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

2006 (2)

2005 (2)

2004 (1)

2003 (2)

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
[CrossRef]

K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. Venugopal Rao, and M. Ebrahimzadeh, “Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing,” Opt. Lett. 28, 911–913 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
[CrossRef]

2000 (1)

1998 (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

1997 (2)

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

1996 (1)

R. S. Grant, “Effective non-linear coefficients of optical waveguide,” Opt. Quantum Electron. 28, 1161–1173 (1996).
[CrossRef]

1995 (1)

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

1993 (1)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

1991 (2)

A. Galvanauskas, J. Webjorn, A. Krotkus, and G. Arvidsson, “Autocorrelation measurement of picosecond laser-diode pulses by means of quasiphase-matching LiNbO3 channel waveguides,” Electron. Lett. 27, 738–740 (1991).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

1984 (1)

Abolghasem, P.

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef] [PubMed]

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Aitchison, J. S.

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Arjmand, A.

P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Arnold, J. M.

Arvidsson, G.

A. Galvanauskas, J. Webjorn, A. Krotkus, and G. Arvidsson, “Autocorrelation measurement of picosecond laser-diode pulses by means of quasiphase-matching LiNbO3 channel waveguides,” Electron. Lett. 27, 738–740 (1991).
[CrossRef]

Ashihara, S.

Berger, V.

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
[CrossRef]

K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Bhat, R.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Bijlani, B.

P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef] [PubMed]

Bijlani, B. J.

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Brown, C. T. A.

Bryce, A. C.

Buchvarov, I.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Calligaro, M.

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
[CrossRef]

K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
[CrossRef]

Caneau, C.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Chou, M. H.

De Rossi, A.

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
[CrossRef]

K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
[CrossRef]

Dû, M. L.

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

Ducci, S.

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33, 2650–2652 (2008).
[CrossRef] [PubMed]

Esteban-Martin, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33, 2650–2652 (2008).
[CrossRef] [PubMed]

Fejer, M. M.

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Fujioka, N.

Fukatsu, S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, J. Webjorn, A. Krotkus, and G. Arvidsson, “Autocorrelation measurement of picosecond laser-diode pulses by means of quasiphase-matching LiNbO3 channel waveguides,” Electron. Lett. 27, 738–740 (1991).
[CrossRef]

Gaydardzhiev, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Ghotbi, M.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Grant, R. S.

R. S. Grant, “Effective non-linear coefficients of optical waveguide,” Opt. Quantum Electron. 28, 1161–1173 (1996).
[CrossRef]

Gwilliam, R. M.

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Han, J.

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Harris, J. S.

Helmy, A. S.

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef] [PubMed]

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
[CrossRef] [PubMed]

A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

Huang, J.

Hutchings, D. C.

Ishizuki, H.

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

Ito, R.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Kano, S. S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Kitamoto, A.

Kityk, I. V.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Kleckner, T. C.

Kokabee, O.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33, 2650–2652 (2008).
[CrossRef] [PubMed]

Kondo, T.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Koza, M. A.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Krotkus, A.

A. Galvanauskas, J. Webjorn, A. Krotkus, and G. Arvidsson, “Autocorrelation measurement of picosecond laser-diode pulses by means of quasiphase-matching LiNbO3 channel waveguides,” Electron. Lett. 27, 738–740 (1991).
[CrossRef]

Kumata, K.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Kuo, P. S.

Kuroda, K.

Kurz, J. R.

Langrock, C.

Leo, G.

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

Likforman, J. P.

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

Majchrowski, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Marcadet, X.

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

Marsh, J. H.

Michalski, E.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Miyata, K.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Moutzouris, K.

Muhairi, A. A.

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Nikolov, I.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Noack, F.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Ohashi, M.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Ono, H.

Ortiz, V.

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
[CrossRef]

K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
[CrossRef]

Parameswaran, K. R.

Petrov, V.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Rao, S. V.

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
[CrossRef]

Ravaro, M.

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Rotermund, F.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Roussev, R. V.

Scaccabarozzi, L.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Shimura, T.

Shiraki, Y.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Shirane, M.

Shoji, I.

Stanley, C. R.

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Suhara, T.

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

Tzankov, P.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Venugopal Rao, S.

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Wagner, S. J.

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

Webjorn, J.

A. Galvanauskas, J. Webjorn, A. Krotkus, and G. Arvidsson, “Autocorrelation measurement of picosecond laser-diode pulses by means of quasiphase-matching LiNbO3 channel waveguides,” Electron. Lett. 27, 738–740 (1991).
[CrossRef]

Weiner, A. M.

Wherrett, B. S.

Xie, J. P.

Yoo, S. J. B.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Yu, X.

Zeaiter, K.

Zheng, Z.

Appl. Phys. Lett. (3)

M. Ravaro, M. L. Dû, J. P. Likforman, S. Ducci, V. Berger, G. Leo, and X. Marcadet, “Estimation of parametric gain in GaAs/AlOx waveguides by fluorescence and second harmonic generation measurements,” Appl. Phys. Lett. 91, 191110 (2007).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, “Second-harmonic generation through optimized modal phase matching in semiconductor waveguides,” Appl. Phys. Lett. 83, 620–622 (2003).
[CrossRef]

Electron. Lett. (1)

A. Galvanauskas, J. Webjorn, A. Krotkus, and G. Arvidsson, “Autocorrelation measurement of picosecond laser-diode pulses by means of quasiphase-matching LiNbO3 channel waveguides,” Electron. Lett. 27, 738–740 (1991).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Abolghasem, J. Han, A. Arjmand, B. Bijlani, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

J. Appl. Phys. (1)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

J. Opt. Soc. Am. B (4)

Laser Photonics Rev. (1)

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev. 4, 53–98 (2010).
[CrossRef]

Nature (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
[CrossRef]

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef] [PubMed]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generation for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
[CrossRef] [PubMed]

J. P. Xie, J. Huang, and M. M. Fejer, “Narrow-linewidth near-degenerate optical parametric generation achieved with quasi-group-velocity-matching in lithium niobate waveguides,” Opt. Lett. 31, 2190–2192 (2006).
[CrossRef] [PubMed]

A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33, 2650–2652 (2008).
[CrossRef] [PubMed]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef] [PubMed]

A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. Venugopal Rao, and M. Ebrahimzadeh, “Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing,” Opt. Lett. 28, 911–913 (2003).
[CrossRef] [PubMed]

Opt. Quantum Electron. (2)

R. S. Grant, “Effective non-linear coefficients of optical waveguide,” Opt. Quantum Electron. 28, 1161–1173 (1996).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated SH output power of BRW I as a function of sample length where the effects of TPA with coefficient α 2 , SPM with coefficient n 2 , GVM, and GVD are independently included. All curves were obtained for a 190 fs pump with an average power of 3.3 mW.

Fig. 2
Fig. 2

Simulated internal conversion efficiency η and normalized internal conversion efficiency η norm (inset) of BRW I as functions of sample length. The simulated graphs were obtained by including the effects of SPM, TPA, GVM, and GVD with their numerical values summarized in Table 1.

Fig. 3
Fig. 3

Effects of SPM ( n 2 ) and TPA ( α 2 ) on the normalized conversion efficiency ( η norm ) of BRW I as the pump power is increased.

Fig. 4
Fig. 4

Simulated SH output power of BRW II as a function of sample length, where the effects of TPA with coefficient α 2 , SPM with coefficient n 2 , GVM, and GVD are independently included. All curves were obtained for a 190 fs pump with an average power of 3.3 mW.

Fig. 5
Fig. 5

Simulated internal conversion efficiency η and normalized internal conversion efficiency η norm (inset) of BRW II as functions of sample length. The simulated graphs were obtained by including the effects of SPM, TPA, GVM, and GVD with their numerical values summarized in Table 2.

Fig. 6
Fig. 6

Effects of SPM ( n 2 ) and TPA ( α 2 ) on the normalized conversion efficiency ( η norm ) of BRW II as the pump power is increased.

Fig. 7
Fig. 7

SH power as a function of pump wavelength for type-II interactions, the solid line is best fit to Lorentzian function. Inset: dependence of SH power on pump power plotted on log-log scale.

Fig. 8
Fig. 8

Normalized power spectral density of incident (solid curve) and transmitted (dotted curve) pumps for type-II interaction at PM and off PM wavelengths. The dashed curve is the Gaussian fitting of the transmitted spectrum at PM wavelength.

Tables (3)

Tables Icon

Table 1 Simulation Parameters of BRW I

Tables Icon

Table 2 Simulation Parameters of BRW II

Tables Icon

Table 3 Comparison of Efficiencies Obtained for Various Samples Using Different PM Techniques. The Extensions-I and -II Indicate Types I and II PMs, Respectively

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E j ( x , y , z , t ) = A j ( z ) E j ( x , y ) exp [ j ( β j z ω j t ) ] ,
d A i d z = j κ i ν A p 1 A p 2   exp [ j Δ β z ] 1 v g , i d A i d t α 0 , i 2 A i [ α 2 , i 2 j 2 π n 2 , i λ i ] | A i | 2 A eff , i ( 3 ) A i ,
d A p 1 d z = j κ p 1 ν A p 1 A i   exp [ j Δ β z ] 1 v g , p 1 d A p 1 d t α 0 , p 1 2 A p 1 [ α 2 , p 1 2 j 2 π n 2 , p 1 λ p 1 ] | A p 1 | 2 A eff , p 1 ( 3 ) A p 1 ,
d A p 2 d z = j κ p 2 ν A p 2 A i   exp [ j Δ β z ] 1 v g , p 2 d A p 2 d t α 0 , p 2 2 A p 2 [ α 2 , p 2 2 j 2 π n 2 , p 2 λ p 2 ] | A p 2 | 2 A eff , p 2 ( 3 ) A p 2 ,
A eff , j ( 3 ) = [ + + I j ( x , y ) d x d y ] 2 + + I j 2 ( x , y ) d x d y ,
κ j = ( 8 π 2 d eff 2 n p 1 n p 2 n i c ϵ 0 λ j 2 ) 1 / 2 ,
d eff = + + E i ( x , y ) d ( x , y ) E p 1 ( x , y ) E p 2 ( x , y ) d x d y + + E i ( x , y ) E p 1 ( x , y ) E p 2 ( x , y ) d x d y ,
GVM p 1 , i = 1 v g , p 1 1 v g , i ,
GVM p 2 , i = 1 v g , p 2 1 v g , i .
GVD j = 2 β j ω 2 = 2 c n j ω + ω j c 2 n j ω 2 ,
Δ α j = α 2 , j I j .
Δ n j = n 2 , j I j ,

Metrics