Abstract

The impact of third-order nonlinearities including self-phase modulation and two-photon absorption on the efficiency of the second-harmonic generation is numerically investigated using the split-step Fourier method in phase-matched Bragg reflection waveguides. Also using the same technique, the adverse effects of group velocity mismatch and group velocity dispersion of the interacting frequencies on the efficiency of the nonlinear process are examined and contrasted for optimal sample design. Using an optimized structure, we report efficient femtosecond second-harmonic generation in monolithic AlGaAs Bragg reflection waveguides for a type II nonlinear interaction. For a 190 fs pulsed pump around 1555 nm with an average power of 3.3 mW, a peak second-harmonic power of 25.5μW is measured in a sample with a length of 1.1 mm. The normalized conversion efficiency of the process is estimated to be 2.0×104%W1cm2. Pump depletion is clearly observed when operating at the phase-matching wavelength.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription