Abstract

We have theoretically and experimentally analyzed the ultraslow matched-pulse propagation in a parametric amplifying medium, especially focusing on the delay-time behaviors of the input probe pulse (signal) and the generated Stokes pulse (idler) under a strong coupling beam. Theoretically, it is predicted that the Stokes pulse always propagates with a definite group velocity with some initial delay time. The probe pulse, on the other hand, propagates at a fixed delay from Stokes after some transient period. This additional delay time is positive (probe is behind Stokes) if the medium is opaque for probe and transparent for Stokes, or it can be negative (probe is ahead of Stokes), if otherwise. It is also shown that the delay times of probe and Stokes, including the order of the pulses, can be arbitrarily and independently controlled by external parameters. The theoretical predictions and numerical simulations have been compared with experimental observations using a hot sodium vapor and they had a very nice agreement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  2. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  3. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
    [CrossRef] [PubMed]
  4. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef] [PubMed]
  5. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [CrossRef]
  6. I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett. 99, 173604 (2007).
    [CrossRef] [PubMed]
  7. M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
    [CrossRef]
  8. J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48 (2008).
    [CrossRef]
  9. H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
    [CrossRef]
  10. R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
    [CrossRef]
  11. R. M. Camacho, M. V. Pack, and J. C. Howell, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2002).
    [CrossRef]
  12. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
    [CrossRef]
  13. H. H. Wang, Y. F. Fan, R. Wang, L. Wang, D. M. Du, Z. H. Kang, Y. Jiang, J. H. Wu, and J. Y. Gao, “Slowing and storage of double light pulses in a Pr3+:Y2SiO5 crystal,” Opt. Lett. 34, 2596–2598 (2009).
    [CrossRef] [PubMed]
  14. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  15. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
    [CrossRef] [PubMed]
  16. B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008).
    [CrossRef] [PubMed]
  17. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
    [CrossRef]
  18. K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
    [CrossRef]
  19. K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
    [CrossRef]
  20. J. Okuma, N. Hayashi, A. Fujisawa, and M. Mitsunaga, “Parametric oscillation in sodium vapor by using an external cavity,” Opt. Lett. 34, 698–700 (2009).
    [CrossRef] [PubMed]
  21. A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Slow and stored light in an amplifying double-Λ system,” Opt. Lett. 33, 1605–1607 (2008).
    [CrossRef] [PubMed]
  22. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
    [CrossRef] [PubMed]
  23. J. Okuma, N. Hayashi, A. Fujisawa, and M. Mitsunaga, “Ultraslow matched-pulse propagation in sodium vapor,” Opt. Lett. 34, 1654–1656 (2009).
    [CrossRef] [PubMed]
  24. S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
    [CrossRef] [PubMed]
  25. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
    [CrossRef]

2009 (4)

2008 (4)

2007 (3)

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett. 99, 173604 (2007).
[CrossRef] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

2006 (2)

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[CrossRef]

2005 (1)

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

2002 (1)

R. M. Camacho, M. V. Pack, and J. C. Howell, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2002).
[CrossRef]

2001 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

1999 (2)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1998 (1)

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

1993 (1)

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef] [PubMed]

1991 (2)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Arimondo, E.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

Baldit, E.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bencheikh, K.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boller, K. -J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boyer, V.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

Camacho, R. M.

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2002).
[CrossRef]

Du, D. M.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Eilam, A.

Fan, Y. F.

Field, J. E.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

Friedmann, H.

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Fujisawa, A.

Fukuda, Y.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Furue, S.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Gao, J. Y.

Hahn, J.

Hahn, K. H.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Ham, B. S.

B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Harada, K.

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hayami, K.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Hayashi, N.

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Hernandez, G.

Hohensee, M.

M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Howell, J. C.

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2002).
[CrossRef]

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Jiang, Y.

Kalra, R.

M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
[CrossRef]

Kanbashi, T.

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Kang, Z. H.

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Klein, M.

M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
[CrossRef]

Kohmoto, T.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Kunitomo, M.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Lett, P. D.

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

Levenson, J. A.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Löffler, M.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Lukin, M. D.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

McCormick, C. F.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

Mitsunaga, M.

J. Okuma, N. Hayashi, A. Fujisawa, and M. Mitsunaga, “Ultraslow matched-pulse propagation in sodium vapor,” Opt. Lett. 34, 1654–1656 (2009).
[CrossRef] [PubMed]

J. Okuma, N. Hayashi, A. Fujisawa, and M. Mitsunaga, “Parametric oscillation in sodium vapor by using an external cavity,” Opt. Lett. 34, 698–700 (2009).
[CrossRef] [PubMed]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Monnier, P.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Mori, K.

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Motomura, K.

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Nakayama, K.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Niwa, H.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Novikova, I.

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett. 99, 173604 (2007).
[CrossRef] [PubMed]

Okuma, J.

Pack, M. V.

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2002).
[CrossRef]

Phillips, D. F.

M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
[CrossRef]

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett. 99, 173604 (2007).
[CrossRef] [PubMed]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Rouget, V.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Tanaka, H.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Walsworth, R. L.

M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
[CrossRef]

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett. 99, 173604 (2007).
[CrossRef] [PubMed]

Wang, H. H.

Wang, L.

Wang, R.

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Wilson-Gordon, A. D.

Wu, J. H.

Xiao, Y.

M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
[CrossRef]

Zhang, J.

Zhu, Y.

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (5)

M. Klein, M. Hohensee, Y. Xiao, R. Kalra, D. F. Phillips, and R. L. Walsworth, “Slow-light dynamics from electromagnetically-induced-transparency spectra,” Phys. Rev. A 79, 053833 (2009).
[CrossRef]

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, “Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor,” Phys. Rev. A 68, 053801 (2003).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[CrossRef]

Phys. Rev. Lett. (12)

R. M. Camacho, M. V. Pack, and J. C. Howell, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2002).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett. 99, 173604 (2007).
[CrossRef] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Double Λ scheme of the Na D 1 line for PA. Experimentally, levels 1, 2, and 3 correspond to 3 S 1 / 2 ( F = 1 ) , 3 S 1 / 2 ( F = 2 ) , and 3 P 1 / 2 ( F = 1 or 2), respectively. (b) Typical temporal profiles of reference, probe, and Stokes pulses in amplified and slowed matched-pulse propagation.

Fig. 2
Fig. 2

Frequency locations of ω p , ω c , and ω s (or ω a s ) with 1.772 GHz spacing in the Doppler-broadened linear absorption spectra of the Na D 1 line. (a) Case A where ω p in the middle of the absorption peak and ω s (or ω a s ) is in the wing. (b) Case B where ω p in the wing and ω s (or ω a s ) is in the middle.

Fig. 3
Fig. 3

Theoretical predictions of the probe delay time τ p and the Stokes delay time τ s as functions of propagation distance z.

Fig. 4
Fig. 4

(a) Oscilloscope traces of reference, probe, and Stokes pulses for case A. (b) Numerical simulation for case A. Parameters employed are γ s / 2 π = 0.2   MHz , Ω c / 2 π = 101   MHz , Γ / 2 π = 10   MHz , γ / 2 π = 250   MHz , and α 0 = 6 cm 1 .

Fig. 5
Fig. 5

(a) Oscilloscope traces of reference, probe, and Stokes pulses for case B. (b) Numerical simulation for case B. Parameters employed are similar to Fig. 3, except for probe and coupling frequencies.

Fig. 6
Fig. 6

Observed and numerically calculated fractional delays as a function of optical density α 0 L . Filled circles are experimental results, and solid lines are numerical simulations. (a) Case A. (b) Case B.

Fig. 7
Fig. 7

Numerical simulation of fractional delays for the probe pulse and the Stokes pulse as functions of coupling frequency.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E p z = β p E p + η p E s ,
E s z = β s E s + η s E p ,
β p = ( α 0 γ / 2 ) ( n 1 / γ p 1 + n 2 / γ p 2 ) ( α 0 γ | Ω c | 2 / 8 γ p 1 γ 0 ) ( n 1 / γ p 1 + n 2 / γ c 2 ) ,
β s = ( α 0 γ / 2 ) ( n 1 / γ s 1 + n 2 / γ s 2 ) ( α 0 γ | Ω c | 2 / 8 γ s 2 γ 0 ) ( n 1 / γ c 1 + n 2 / γ s 2 ) ,
η p = ( α 0 γ Ω c 2 / 8 γ p 1 γ 0 ) ( n 1 / γ c 1 + n 2 / γ s 2 ) ,
η s = ( α 0 γ Ω c 2 / 8 γ s 2 γ 0 ) ( n 1 / γ p 1 + n 2 / γ c 2 ) .
E p ( z , t ) = E 0 ( ω p ) exp ( σ z ) [ cosh ( ξ z ) β p β s 2 ξ sinh ( ξ z ) ] exp [ i ω p ( t z / c ) ] d ω p ,
E s ( z , t ) = E 0 ( ω p ) exp ( σ z ) η s ξ sinh ( ξ z ) exp [ i ω p ( t z / c ) ] d ω p ,
τ c = d d ω p Arg [ exp ( σ z ) ] ,
τ a = d d ω p Arg [ cosh ( ξ z ) β p β s 2 ξ sinh ( ξ z ) ] ,
τ i = d d ω p Arg [ η s ξ sinh ( ξ z ) ] ,
τ c = z 2 d d ω I [ β p + β s ] .
τ c = z 2 d d ω I [ β p ] = z 2 v EIT ,
v EIT 1 = α 0 2 γ s | Ω c | 2 / 4 γ γ s ( 1 + | Ω c | 2 / 4 γ γ s ) 2 .
τ c = z 2 d d ω I [ β s ] = z 2 v EIT .
τ a = z 2 d d ω I [ β p β s ] .
τ a = 1 2 ξ d d ω I [ β p β s ] ,
τ i = 1 γ s + | Ω c | 2 / 4 γ .

Metrics