Abstract

We investigate two different types of coaxial hybrid plasmonic nanowire waveguides. The first type consists of a metal cladding, a sandwiched low index dielectric layer, and a high index dielectric core. The second type is the reverse version of the first type. We analyze their modal properties by the use of the mode hybridization concept and calculate the dispersion relations, normalized mode areas, and confinement factors. For the first kind of hybrid waveguide, we can obtain less loss with similar confinement and slightly less overlap between optical modes and the core region. For the second kind of hybrid waveguide, we can obtain strong confinement and enhanced optical fields in a low refractive index region.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
    [Crossref] [PubMed]
  2. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
    [Crossref] [PubMed]
  3. P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
    [Crossref]
  4. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
    [Crossref]
  5. R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
    [Crossref]
  6. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
    [Crossref]
  7. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 646801 (2007).
    [Crossref]
  8. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
    [Crossref]
  9. V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
    [Crossref]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
    [Crossref]
  11. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
    [Crossref]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref] [PubMed]
  13. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21, 362–364 (2009).
    [Crossref]
  14. C. Du, Q. Xue, and P. Liu, “Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications,” IEEE Electron Device Lett. 29, 1256–1258 (2008).
    [Crossref]
  15. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
    [Crossref]
  16. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).
  17. P. B. Johnson and R. W. Christie, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  18. K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
    [Crossref] [PubMed]
  19. K. L. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
    [Crossref]
  20. C. C. Fan and J. H. Peng, Guided-Wave Optics (Beijing University of Technology Press, 1988).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

2009 (3)

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21, 362–364 (2009).
[Crossref]

2008 (4)

C. Du, Q. Xue, and P. Liu, “Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications,” IEEE Electron Device Lett. 29, 1256–1258 (2008).
[Crossref]

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

2007 (2)

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 646801 (2007).
[Crossref]

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

2006 (2)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

2002 (2)

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
[Crossref]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

1974 (1)

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christie, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Agarwal, R.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Cai, D.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Choi, H. -J.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

Christie, R. W.

P. B. Johnson and R. W. Christie, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Du, C.

C. Du, Q. Xue, and P. Liu, “Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications,” IEEE Electron Device Lett. 29, 1256–1258 (2008).
[Crossref]

Duan, X. F.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

Economou, E. N.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]

Fan, C. C.

C. C. Fan and J. H. Peng, Guided-Wave Optics (Beijing University of Technology Press, 1988).

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Freude, W.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21, 362–364 (2009).
[Crossref]

Fujii, M.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21, 362–364 (2009).
[Crossref]

Gargas, D.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Giersig, M.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Harrington, R. F.

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

He, R.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

Herczynski, A.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Huang, Y.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

Huang, Z. P.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Johnson, J.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christie, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kempa, K.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Kind, H.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Klein, B.

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]

Krishnamurthy, V.

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Law, M.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
[Crossref]

Leuthold, J.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21, 362–364 (2009).
[Crossref]

Lieber, C. M.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

Liu, P.

C. Du, Q. Xue, and P. Liu, “Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications,” IEEE Electron Device Lett. 29, 1256–1258 (2008).
[Crossref]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Mao, S.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 646801 (2007).
[Crossref]

Messer, B.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
[Crossref]

Mittleman, D. M.

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

K. L. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
[Crossref]

Morris, N.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

Naughton, M. J.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Ngai, K. L.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]

Ning, C. Z.

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 646801 (2007).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Peng, J. H.

C. C. Fan and J. H. Peng, Guided-Wave Optics (Beijing University of Technology Press, 1988).

Pfeiffer, C. A.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]

Pham, J.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ren, Z. F.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Russo, R.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Rybczynski, J.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Saykally, R.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Wang, K. L.

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

K. L. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
[Crossref]

Wang, Y.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Xue, Q.

C. Du, Q. Xue, and P. Liu, “Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications,” IEEE Electron Device Lett. 29, 1256–1258 (2008).
[Crossref]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Yan, H. Q.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
[Crossref]

Yan, R.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Yang, P. D.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
[Crossref]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Adv. Funct. Mater. (1)

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[Crossref]

Adv. Mater. (1)

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14, 158–160 (2002).
[Crossref]

Appl. Phys. Lett. (1)

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90, 021104 (2007).
[Crossref]

IEEE Electron Device Lett. (1)

C. Du, Q. Xue, and P. Liu, “Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications,” IEEE Electron Device Lett. 29, 1256–1258 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21, 362–364 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Phys. Rev. B (3)

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

P. B. Johnson and R. W. Christie, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 646801 (2007).
[Crossref]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Other (3)

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

C. C. Fan and J. H. Peng, Guided-Wave Optics (Beijing University of Technology Press, 1988).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross sections of the waveguides discussed in this paper. (a) Structure A: a dielectric core surrounded by a metal cladding ; (b) structure B: a metal core surrounded by a dielectric cladding; (c) structure C: from inside to outside, a high index dielectric core, sandwiched low index dielectric layer, and metal cladding; (d) structure D: from inside to outside, a metal core, sandwiched low index dielectric layer, and high index dielectric cladding.

Fig. 2
Fig. 2

The results of the fundamental mode of structure A. (a) The propagation constant. β is the real part and α is the imaginary part. (b) The mode area and the confinement factor.

Fig. 3
Fig. 3

Mode profiles of structures C and D. (a) HE 11 -like fundamental mode of structure C; (b) TM 01 -like fundamental mode of structure D.

Fig. 4
Fig. 4

Simulation results of the fundamental mode of structure C. (a) Real part of propagation constant β. (b) Imaginary part of propagation constant α. (c) Normalized mode area. (d) Confinement factor.

Fig. 5
Fig. 5

Simulation results of the fundamental mode of structure D. (a) Real part of propagation constant β. (b) Imaginary part of propagation constant α. (c) Normalized mode area. (d) Confinement factor.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E z = ( A J n ( k t ρ ) + B H n ( k t ρ ) ) e j n ϕ e j k z z ,
H z = ( C J n ( k t ρ ) + D H n ( k t ρ ) ) e j n ϕ e j k z z ,
E t = j k 2 k z 2 ( ω μ t × H z + k z t E z ) ,
H t = j k 2 k z 2 ( ω ε t × E z k z t H z ) ,
W ( r ) = 1 2 Re { d ε ( r ) ω d ω } | E ( r ) | 2 + 1 2 μ 0 | H ( r ) | 2 .
Γ = gain | E | 2 d V | E | 2 d V .
Re { k s p } > n h k 0 ,

Metrics