Abstract

In this study, we have investigated nanoplasmonic modulation for surface plasmon resolution imaging. Subwavelength metal grating was used to localize plasmon excitation, thereby limiting the propagation of surface plasmon. An optimum grating structure for an enhanced lateral imaging resolution was designed based on the effective medium theory. A metal grating at 400 nm period was fabricated on a metallic thin film and a BK7 glass substrate. For metal, both gold and silver were considered. Effects of other geometrical parameters such as grating thickness and orientation were also explored. The resolution enhancement was found to be more effective with silver than gold. Studies on grating thickness and orientation suggest that stronger plasmon localization produce more efficient resolution enhancement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Brockman, A. G. Frutos, and R. M. Corn, “A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging,” J. Am. Chem. Soc. 121, 8044–8051 (1999).
    [CrossRef]
  2. N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6, 389–393 (2009).
    [CrossRef]
  3. W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186–188 (1989).
    [CrossRef]
  4. K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
    [CrossRef] [PubMed]
  5. W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  6. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
    [CrossRef]
  7. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
    [CrossRef] [PubMed]
  8. A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
    [CrossRef]
  9. G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
    [CrossRef] [PubMed]
  10. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
    [CrossRef] [PubMed]
  11. M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39, 6279–6287 (2000).
    [CrossRef]
  12. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
    [CrossRef]
  13. T. Tanaka and S. Yamamoto, “Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors,” Appl. Opt. 42, 4002–4007 (2003).
    [CrossRef] [PubMed]
  14. L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett. 32, 509–511 (2007).
    [CrossRef] [PubMed]
  15. M. G. Somekh, G. Stabler, S. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett. 34, 3110–3112 (2009).
    [CrossRef] [PubMed]
  16. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
    [CrossRef] [PubMed]
  17. I. I. Smolyaninov and C. C. Davis, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
    [CrossRef]
  18. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
    [CrossRef]
  19. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
    [CrossRef]
  20. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
    [CrossRef] [PubMed]
  21. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006).
    [CrossRef] [PubMed]
  22. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007).
    [CrossRef] [PubMed]
  23. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007).
    [CrossRef] [PubMed]
  24. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725–735 (2008).
    [CrossRef]
  25. U. Fernandez, T. M. Fischer, and W. Knoll, “Surface-plasmon microscopy with grating couplers,” Opt. Commun. 102, 49–52 (1993).
    [CrossRef]
  26. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 1.
  27. A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
    [CrossRef]
  28. S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543–2549 (2007).
    [CrossRef]
  29. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  30. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851 (1998).
    [CrossRef]
  31. C. W. Haggans, L. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mounting,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
    [CrossRef]
  32. S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207 (2006).
    [CrossRef]
  33. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007).
    [CrossRef] [PubMed]
  34. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  35. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “Optical V(z) for high resolution 2π surface plasmon microscopy,” Opt. Lett. 25, 823–825 (2000).
    [CrossRef]
  36. Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A 24, 3547–3553 (2007).
    [CrossRef]
  37. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
    [CrossRef]

2009

2008

S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725–735 (2008).
[CrossRef]

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

2007

2006

2005

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov and C. C. Davis, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
[CrossRef]

2004

G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

T. Tanaka and S. Yamamoto, “Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors,” Appl. Opt. 42, 4002–4007 (2003).
[CrossRef] [PubMed]

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

2000

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “Optical V(z) for high resolution 2π surface plasmon microscopy,” Opt. Lett. 25, 823–825 (2000).
[CrossRef]

M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39, 6279–6287 (2000).
[CrossRef]

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

1999

J. M. Brockman, A. G. Frutos, and R. M. Corn, “A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging,” J. Am. Chem. Soc. 121, 8044–8051 (1999).
[CrossRef]

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

1998

1996

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[CrossRef]

1994

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

1993

1989

W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186–188 (1989).
[CrossRef]

1956

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Argoul, F.

Barnes, W. L.

W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bastmeyer, M.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Bechinger, C.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Beloglazov, A. A.

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

Berguiga, L.

Blow, N.

N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6, 389–393 (2009).
[CrossRef]

Brockman, J. M.

J. M. Brockman, A. G. Frutos, and R. M. Corn, “A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging,” J. Am. Chem. Soc. 121, 8044–8051 (1999).
[CrossRef]

Byun, K. M.

Chen, Z.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A 24, 3547–3553 (2007).
[CrossRef]

Corn, R. M.

J. M. Brockman, A. G. Frutos, and R. M. Corn, “A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging,” J. Am. Chem. Soc. 121, 8044–8051 (1999).
[CrossRef]

Cui, B.

Davis, C. C.

I. I. Smolyaninov and C. C. Davis, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

de Bruijn, H. E.

Elezgaray, J.

El-Haija, A. J. A.

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

Elliott, J.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Fernandez, U.

U. Fernandez, T. M. Fischer, and W. Knoll, “Surface-plasmon microscopy with grating couplers,” Opt. Commun. 102, 49–52 (1993).
[CrossRef]

Fischer, T. M.

U. Fernandez, T. M. Fischer, and W. Knoll, “Surface-plasmon microscopy with grating couplers,” Opt. Commun. 102, 49–52 (1993).
[CrossRef]

Frutos, A. G.

J. M. Brockman, A. G. Frutos, and R. M. Corn, “A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging,” J. Am. Chem. Soc. 121, 8044–8051 (1999).
[CrossRef]

Giebel, K. -F.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Greve, J.

Grigorenko, A. N.

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

Haggans, C. W.

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Herminghaus, S.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Hickel, W.

W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186–188 (1989).
[CrossRef]

Hooper, I. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A 24, 3547–3553 (2007).
[CrossRef]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[CrossRef] [PubMed]

Hugonin, J. P.

Kamp, D.

W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186–188 (1989).
[CrossRef]

Kano, H.

Kawata, S.

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Kim, D.

Kim, K.

Kim, S. J.

Knoll, W.

U. Fernandez, T. M. Fischer, and W. Knoll, “Surface-plasmon microscopy with grating couplers,” Opt. Commun. 102, 49–52 (1993).
[CrossRef]

W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186–188 (1989).
[CrossRef]

Kooyman, R. P. H.

Kostuk, R. K.

Kuhne, C.

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

Lalanne, P.

Leiderer, P.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Li, L.

Liu, S.

Liu, S. G.

Malic, L.

Mizuguchi, S.

Moon, S.

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Nikitin, P. I.

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 1.

Riedel, M.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Salzer, R.

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

Sambles, J. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A 24, 3547–3553 (2007).
[CrossRef]

See, C. W.

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov and C. C. Davis, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Somekh, M. G.

Stabler, G.

Steiner, G.

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

Tabrizian, M.

Tanaka, T.

Velinov, T. S.

Veres, T.

Weiland, U.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Yamamoto, S.

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[CrossRef]

Yoon, S. J.

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[CrossRef] [PubMed]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[CrossRef] [PubMed]

Zayats, A. V.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Zhang, J.

Zhang, S.

Anal. Chem.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
[CrossRef] [PubMed]

Biosens. Bioelectron.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[CrossRef]

J. Am. Chem. Soc.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

J. M. Brockman, A. G. Frutos, and R. M. Corn, “A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging,” J. Am. Chem. Soc. 121, 8044–8051 (1999).
[CrossRef]

J. Appl. Phys.

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

J. Microsc.

G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Methods

N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6, 389–393 (2009).
[CrossRef]

Nature

W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186–188 (1989).
[CrossRef]

W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000).
[CrossRef]

U. Fernandez, T. M. Fischer, and W. Knoll, “Surface-plasmon microscopy with grating couplers,” Opt. Commun. 102, 49–52 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

I. I. Smolyaninov and C. C. Davis, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Phys. Rev. Lett.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 1.

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated resolution enhancement ratio R, as a function of fill factor f and nanograting period Λ: (a) and (b) for gold, and (c) and (d) for silver.

Fig. 2
Fig. 2

SEM images of the fabricated nanograting sample prior to writing reference patterns: (a) gold and (b) silver at d g = 20   nm . (c) Schematics of the sample and optical setup based on the Kretschmann configuration (CO, collimator; PO, polarizer; BP, bandpass filter; OB, objective lens; and ZO, zoom lens).

Fig. 3
Fig. 3

SEM images of reference evaluation patterns formed on the nanograting samples (silver, d g = 20   nm ): (a) squares and (b) text.

Fig. 4
Fig. 4

SEM images of reference squares on the thin film surface: (a) gold and (b) silver. Corresponding SPR images: (c) gold and (d) silver. SPR images of the reference pattern ( × 25 ) on nanograting samples: (e) gold, d g = 10   nm ; (f) silver, d g = 10   nm ; (g) gold, d g = 20   nm ; and (h) silver, d g = 20   nm . The lines represent the paths for intensity profiles presented in Fig. 5.

Fig. 5
Fig. 5

Measured intensity profiles across the reference pattern boundary following the paths shown in Fig. 4: (a) gold and (b) silver.

Fig. 6
Fig. 6

SPR images of the reference text on the thin film surface: (a) gold and (b) silver. SPR images on nanogratings: (c) gold, d g = 10   nm ; (d) silver, d g = 10   nm ; (e) gold, d g = 20   nm ; and (f) silver, d g = 20   nm .

Fig. 7
Fig. 7

SPR images of the reference text on a silver nanograting at d g = 20   nm : grating wires are (a) orthogonal and (b) parallel to the light incidence. (c) Measured intensity profiles across the paths of (a) and (b).

Tables (3)

Tables Icon

Table 1 Design Parameters Used to Fabricate the Nanograting Samples

Tables Icon

Table 2 Measured 10%–90% Transition Distances and REFs for Various Structures a

Tables Icon

Table 3 Experimentally Obtained REF on a Silver Nanograting ( d g = 20   nm ) with Respect to the Orientation of Grating Wires a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L i = 1 2 K SP ,
K SP w c ( ε 1 ε 2 , eff ε 1 + ε 2 , eff ) 1 / 2 ,
K SP w c ( ε 1 ε 2 , eff ε 1 + ε 2 , eff ) 3 / 2 [ ε 1 2 ( ε 1 ) 2 + ε 2 , eff 2 ( ε 2 , eff ) 2 ] .
K SP = w c ( ε 1 ε 2 , eff ε 1 + ε 2 , eff ) 1 / 2 = K 0   sin   θ sp .
L i = c w ( ε 1 + ε 2 , eff ε 1 ε 2 , eff ) 3 / 2 [ ε 1 ( ε 1 ) 2 + ε 2 , eff ( ε 2 , eff ) 2 ] = c w [ ε 1 ε 2 , eff ( ε 1 + ε 2 , eff ) 3 ] / [ ε 1 ( ε 2 , eff ) 2 + ( ε 1 ) 2 ε 2 , eff ] .
ε eff = ε TM ( 0 ) + π 2 3 f 2 ( 1 f ) 2 ( 1 ε 1 1 ε amb ) 2 ε TM ( 0 ) 3 ε TE ( 0 ) ( Λ λ ) 2 .
ε eff = ε TE ( 0 ) + π 2 3 f 2 ( 1 f ) 2 ( ε 1 ε amb ) 2 ( Λ λ ) 2 .
ε TE ( 0 ) = f ε 1 + ( 1 f ) ε amb ,
ε TM ( 0 ) = ε 1 ε amb f ε amb + ( 1 f ) ε 1 ,
L i = c w ( ε eff ) 2 ε eff ( 1 ε eff + 1 ε amb ) 3 / 2 .
R = ( ε eff ) 2 ( ε 1 ) 2 ε 1 ε eff ( 1 ε eff + 1 ε amb ) 3 / 2 ( 1 ε 1 + 1 ε amb ) 3 / 2 ,
R ( ε eff ) 2 ( ε 1 ) 2 ε 1 ε eff ( ε amb ε eff + 1 ) 3 / 2 .

Metrics