Abstract

The two-Stokes generation of a Q-switched microchip laser with intracavity stimulated Raman scattering frequency conversion and multiwave mixing has been investigated theoretically and experimentally. The dependences of the output power and the pulse repetition rate of the Nd:LaSc3(BO4)3 (Nd:LSB)-Cr:YAG-BaWO4 microchip laser on the pump power have been experimentally obtained and the shapes of the fundamental, first Stokes, and second Stokes pulses have been recorded. The effect of the intracavity multiwave mixing on the characteristics of the both Stokes pulses and their shapes has been analyzed. The modeling of the output parameters and the calculated pulse shapes agree well with the obtained experimental results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics Part 8, M.G.Gupta, ed. (CRC, 1997), pp. 326–393.
  2. J. Wallace, “Passive Q-switching leads to high power,” Laser Focus World 35, 25–26 (1999).
  3. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 394–400 (2000).
    [CrossRef]
  4. S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
    [CrossRef]
  5. J. J. Zayhovski and A. L. Wilson, Jr., “Pump-induced bleaching of the saturable absorber in short-pulse Nd3+:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39, 1588–1593 (2003).
    [CrossRef]
  6. Y. Kalisky, L. Kravchik, and M. R. Kokta, “Performance of diode-end-pumped Cr4+, Nd3+:YAG self Q switched and Nd3+:YAG/Cr4+:YAG diffusion-bonded lasers,” Opt. Mater. 24, 607–614 (2004).
    [CrossRef]
  7. J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
    [CrossRef]
  8. A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
    [CrossRef]
  9. A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
    [CrossRef]
  10. T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
    [CrossRef]
  11. Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett. 29, 1251–1253 (2004).
    [CrossRef] [PubMed]
  12. F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
    [CrossRef]
  13. Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
    [CrossRef]
  14. P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
    [CrossRef]
  15. T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
    [CrossRef]
  16. S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260, 680–686 (2006).
    [CrossRef]
  17. S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
    [CrossRef]
  18. J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
    [CrossRef]
  19. G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
    [CrossRef]
  20. A. Pentzkofer, A. Lauberau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
    [CrossRef]
  21. C. Serrat, M. P. van Exter, N. J. van Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999).
    [CrossRef]
  22. N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18, 1793–1804 (2001).
    [CrossRef]
  23. S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].
  24. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of spatial and temporal noncoherence of the pump radiation on the Stokes signal amplification,” Sov. J. Quantum Electron. 7, 659–660 (1977).
    [CrossRef]
  25. J.-P. Meyn and G. Huber, “Intracavity frequency doubling of continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser,” Opt. Lett. 19, 1436–1438 (1994).
    [CrossRef] [PubMed]
  26. M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
    [CrossRef]
  27. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
    [CrossRef]

2008 (2)

J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
[CrossRef]

S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
[CrossRef]

2006 (4)

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260, 680–686 (2006).
[CrossRef]

2005 (1)

S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
[CrossRef]

2004 (4)

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett. 29, 1251–1253 (2004).
[CrossRef] [PubMed]

Y. Kalisky, L. Kravchik, and M. R. Kokta, “Performance of diode-end-pumped Cr4+, Nd3+:YAG self Q switched and Nd3+:YAG/Cr4+:YAG diffusion-bonded lasers,” Opt. Mater. 24, 607–614 (2004).
[CrossRef]

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

2003 (2)

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

J. J. Zayhovski and A. L. Wilson, Jr., “Pump-induced bleaching of the saturable absorber in short-pulse Nd3+:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39, 1588–1593 (2003).
[CrossRef]

2002 (1)

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

2001 (2)

N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18, 1793–1804 (2001).
[CrossRef]

M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
[CrossRef]

2000 (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 394–400 (2000).
[CrossRef]

1999 (2)

J. Wallace, “Passive Q-switching leads to high power,” Laser Focus World 35, 25–26 (1999).

C. Serrat, M. P. van Exter, N. J. van Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999).
[CrossRef]

1998 (1)

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

1997 (1)

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

1994 (1)

1991 (1)

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

1979 (1)

A. Pentzkofer, A. Lauberau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

1977 (1)

G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of spatial and temporal noncoherence of the pump radiation on the Stokes signal amplification,” Sov. J. Quantum Electron. 7, 659–660 (1977).
[CrossRef]

1974 (1)

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

Akhmanov, S. A.

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

Apanasevich, P. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

Basiev, T. T.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Bass, M.

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

Batay, L. E.

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

Bian, H.

J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
[CrossRef]

Brussard, M.

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

Cerny, P.

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

Chang, J.

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Chen, Y. F.

Coyle, D. B.

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

D’yakov, Yu. E.

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

Danailov, M. B.

S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
[CrossRef]

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
[CrossRef]

Degnan, J. J.

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

Dekker, P.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Demidovich, A. A.

S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
[CrossRef]

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
[CrossRef]

Ding, Sh.

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Dyer, P. E.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260, 680–686 (2006).
[CrossRef]

Fan, Sh.

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Grabtchikov, A. S.

S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
[CrossRef]

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

Hait, V. L.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
[CrossRef]

Harrison, J.

J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics Part 8, M.G.Gupta, ed. (CRC, 1997), pp. 326–393.

Huber, G.

Ireland, C. L. M.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260, 680–686 (2006).
[CrossRef]

Jabczynski, J.

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

Jelinkova, H.

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

Jia, P.

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Kaiser, W.

A. Pentzkofer, A. Lauberau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Kalisky, Y.

Y. Kalisky, L. Kravchik, and M. R. Kokta, “Performance of diode-end-pumped Cr4+, Nd3+:YAG self Q switched and Nd3+:YAG/Cr4+:YAG diffusion-bonded lasers,” Opt. Mater. 24, 607–614 (2004).
[CrossRef]

Kay, R. B.

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

Kiefer, W.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

Kokta, M. R.

Y. Kalisky, L. Kravchik, and M. R. Kokta, “Performance of diode-end-pumped Cr4+, Nd3+:YAG self Q switched and Nd3+:YAG/Cr4+:YAG diffusion-bonded lasers,” Opt. Mater. 24, 607–614 (2004).
[CrossRef]

Konjushkin, V. A.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Kopczynski, K.

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

Kravchik, L.

Y. Kalisky, L. Kravchik, and M. R. Kokta, “Performance of diode-end-pumped Cr4+, Nd3+:YAG self Q switched and Nd3+:YAG/Cr4+:YAG diffusion-bonded lasers,” Opt. Mater. 24, 607–614 (2004).
[CrossRef]

Kutovoi, S. A.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Kuzmin, A. N.

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
[CrossRef]

Kuzmin, O. V.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
[CrossRef]

Laporta, P.

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

Lauberau, A.

A. Pentzkofer, A. Lauberau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Li, Sh.

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Lien, Y.

Lisinetskii, V. A.

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

Liu, B.

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Liu, Zh.

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Meyn, J. -P.

Miaoa, J.

J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
[CrossRef]

Mikhailov, S. I.

G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of spatial and temporal noncoherence of the pump radiation on the Stokes signal amplification,” Sov. J. Quantum Electron. 7, 659–660 (1977).
[CrossRef]

Mironov, A. B.

G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of spatial and temporal noncoherence of the pump radiation on the Stokes signal amplification,” Sov. J. Quantum Electron. 7, 659–660 (1977).
[CrossRef]

Oemrawsingh, S. S. R.

Ojima, Y.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Omatsu, T.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Orlovich, V. A.

S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
[CrossRef]

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

Osiko, V. V.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Pask, H. M.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Pavlov, L. I.

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

Pearce, S.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260, 680–686 (2006).
[CrossRef]

Penga, J.

J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
[CrossRef]

Pentzkofer, A.

A. Pentzkofer, A. Lauberau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Piper, J. A.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Serrat, C.

N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18, 1793–1804 (2001).
[CrossRef]

C. Serrat, M. P. van Exter, N. J. van Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999).
[CrossRef]

Shcherbakov, I. A.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Su, F.

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Sulc, J.

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

Tana, H.

J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
[CrossRef]

van Druten, N. J.

N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18, 1793–1804 (2001).
[CrossRef]

C. Serrat, M. P. van Exter, N. J. van Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999).
[CrossRef]

van Exter, M. P.

N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18, 1793–1804 (2001).
[CrossRef]

C. Serrat, M. P. van Exter, N. J. van Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999).
[CrossRef]

Vassiliev, S. V.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Voitikov, S. V.

S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
[CrossRef]

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
[CrossRef]

Wallace, J.

J. Wallace, “Passive Q-switching leads to high power,” Laser Focus World 35, 25–26 (1999).

Wang, Q.

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Wanga, B.

J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
[CrossRef]

Wilson, A. L.

J. J. Zayhovski and A. L. Wilson, Jr., “Pump-induced bleaching of the saturable absorber in short-pulse Nd3+:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39, 1588–1593 (2003).
[CrossRef]

Woerdman, J. P.

N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18, 1793–1804 (2001).
[CrossRef]

C. Serrat, M. P. van Exter, N. J. van Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999).
[CrossRef]

Xiao, G.

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

Zagumenni, A. I.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Zavartsev, Y. D.

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Zayhovski, J. J.

J. J. Zayhovski and A. L. Wilson, Jr., “Pump-induced bleaching of the saturable absorber in short-pulse Nd3+:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39, 1588–1593 (2003).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 394–400 (2000).
[CrossRef]

J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics Part 8, M.G.Gupta, ed. (CRC, 1997), pp. 326–393.

Zendizan, W.

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

Zhang, Ch.

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Zhang, S.

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Zhang, X.

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Zubarev, G.

G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of spatial and temporal noncoherence of the pump radiation on the Stokes signal amplification,” Sov. J. Quantum Electron. 7, 659–660 (1977).
[CrossRef]

Appl. Phys. B (2)

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509–514 (2003).
[CrossRef]

M. B. Danailov, A. A. Demidovich, A. N. Kuzmin, O. V. Kuzmin, and V. L. Hait, “On the performance of short pulse Nd3+:LSB microchip lasers,” Appl. Phys. B 73, 671–676 (2001).
[CrossRef]

IEEE J. Quantum Electron. (6)

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron. 34, 887–899 (1998).
[CrossRef]

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

C. Serrat, M. P. van Exter, N. J. van Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999).
[CrossRef]

J. J. Zayhovski and A. L. Wilson, Jr., “Pump-induced bleaching of the saturable absorber in short-pulse Nd3+:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39, 1588–1593 (2003).
[CrossRef]

Sh. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, Sh. Li, Sh. Fan, J. Chang, S. Zhang, and Zh. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

J. Alloys Compd. (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Compd. 303, 394–400 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

F. Su, X. Zhang, Q. Wang, Sh. Ding, P. Jia, Sh. Li, Sh. Fan, Ch. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[CrossRef]

Laser Focus World (1)

J. Wallace, “Passive Q-switching leads to high power,” Laser Focus World 35, 25–26 (1999).

Laser Phys. Lett. (1)

T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumenni, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode pumped 500-picosecond Nd:GdVO4 Raman laser,” Laser Phys. Lett. 1, 237–240 (2004).
[CrossRef]

Opt. Commun. (6)

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260, 680–686 (2006).
[CrossRef]

S. V. Voitikov, A. S. Grabtchikov, A. A. Demidovich, M. B. Danailov, and V. A. Orlovich, “Quantum theory of microchip lasers with intracavity SRS-conversion,” Opt. Commun. 281, 5202–5212 (2008).
[CrossRef]

P. Cerny, W. Zendizan, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209, 403–409 (2002).
[CrossRef]

S. V. Voitikov, A. A. Demidovich, L. E. Batay, M. B. Danailov, and A. N. Kuzmin, “Sub-nanosecond pulse dynamics of Nd:LSB microchip laser passively Q switched by Cr:YAG saturable absorber,” Opt. Commun. 251, 154–164 (2005).
[CrossRef]

A. A. Demidovich, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, “Modeling and experimental investigation of short pulse Raman microchip laser,” Opt. Commun. 263, 52–59 (2006).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Opt. Laser Technol. (1)

J. Miaoa, B. Wanga, J. Penga, H. Tana, and H. Bian, “Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal,” Opt. Laser Technol. 40, 137–141 (2008).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

Y. Kalisky, L. Kravchik, and M. R. Kokta, “Performance of diode-end-pumped Cr4+, Nd3+:YAG self Q switched and Nd3+:YAG/Cr4+:YAG diffusion-bonded lasers,” Opt. Mater. 24, 607–614 (2004).
[CrossRef]

Prog. Quantum Electron. (1)

A. Pentzkofer, A. Lauberau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of spatial and temporal noncoherence of the pump radiation on the Stokes signal amplification,” Sov. J. Quantum Electron. 7, 659–660 (1977).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov, “Statistical phenomena in stimulated Raman scattering excited by broad band optical pump,” Zh. Eksp. Teor. Fiz. 66, 520–527 (1974) S. A. Akhmanov, Yu. E. D’yakov, and L. I. Pavlov[Sov. Phys. JETP 39, 259–256 (1974)].

Other (1)

J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics Part 8, M.G.Gupta, ed. (CRC, 1997), pp. 326–393.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the diode-pumped passively Q-switched microchip laser with intracavity Raman conversion.

Fig. 2
Fig. 2

Experimental (dots) dependences (a) of the fundamental (line 2), first Stokes (line 3), second Stokes (line 4), and total (line 1) average output powers, and (b) of the pulse repetition rate (dots: experiment; line: theory) on the pump power.

Fig. 3
Fig. 3

Experimental (dots) and theoretical (lines) dependences of the (a) fundamental, (b) first Stokes, and (c) second Stokes pulse energies on the pump power. δ m w , eff = 0.125 (line 1), 0.06 (line 2), 0.04 (line 3), 0.02 (line 4), 0.0025 (line 5).

Fig. 4
Fig. 4

Fundamental (laser), first Stokes, and second Stokes pulse shapes obtained experimentally (dots) at a pump power of 810 mW. The theoretical pulse shapes (lines) have been calculated at δ m w , eff = 0.04 . Also the fundamental pulse shape calculated in the absence of SRS-conversion in the laser is shown.

Fig. 5
Fig. 5

Calculated (lines) dependences of the fundamental (laser), first Stokes, and second Stokes pulse durations on the effective coupling factor δ m w , eff . The pump power is 810 mW. Dots show the experimentally measured durations.

Tables (1)

Tables Icon

Table 1 Laser Parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d A L ( t ) d t = 1 2 c σ a m 0 d r 2 π r 2 π ( r L ( a m ) ) 2 exp ( 2 r 2 / π ( r L ( a m ) ) 2 ) [ n u ( r , t ) n l ( r , t ) ] A L ( t ) L L 1 2 c ( σ 13 , L σ 24 , L ) 0 d r 2 π r 2 π ( r L ( s a ) ) 2 exp ( 2 r 2 / π ( r L ( s a ) ) 2 ) n a ( r , t ) A L ( t ) L L 1 2 c σ 24 n a 0 A L ( t ) L L + i π L ( R m ) N ( α q ) ( ω L ω S 1 μ L μ S 1 L L L S 1 ) 1 / 2 A S 1 ( t ) Q L , S 1 ( t ) 1 2 c ( α L 1 2 ln ( R L , i n R L , o u t ) ) A L ( t ) L L + 1 2 β s p 0 d r 2 π r 2 π ( r L ( a m ) ) 2 exp ( 2 r 2 / π ( r L ( a m ) ) 2 ) n u ( r , t ) τ u l ,
d A S 1 ( t ) d t = i π L ( R m ) N ( α q ) [ ( ω L ω S 1 μ L μ S 1 L L L S 1 ) 1 / 2 A L ( t ) Q L , S 1 ( t ) + ( ω S 1 ω S 2 μ S 1 μ S 2 L S 1 L S 2 ) 1 / 2 A S 2 ( t ) Q S 1 , S 2 ( t ) ] 1 2 c ( σ 13 , S 1 σ 24 , S 1 ) 0 d r 2 π r 2 π ( r S 1 ( s a ) ) 2 exp ( 2 r 2 / π ( r S 1 ( s a ) ) 2 ) n a ( r , t ) A S 1 ( t ) L S 1 1 2 c σ 24 , S 1 n a 0 A S 1 ( t ) L S 1 1 2 c ( α S 1 1 2 ln ( R S 1 , i n R S 1 , o u t ) ) A S 1 ( t ) L S 1 ,
d A S 2 ( t ) d t = 1 2 c ( σ 13 , S 2 σ 24 , S 2 ) 0 d r 2 π r 2 π ( r S 2 ( s a ) ) 2 exp ( 2 r 2 / π ( r S 2 ( s a ) ) 2 ) n a ( r , t ) A S 2 ( t ) L S 2 1 2 c σ 24 , S 2 n a 0 A S 2 ( t ) L S 2 + i π L ( R m ) N ( α q ) ( ω S 1 ω S 2 μ S 1 μ S 2 L S 1 L S 2 ) 1 / 2 A S 1 ( t ) Q S 1 , S 2 ( t ) 1 2 c ( α S 2 1 2 ln ( R S 2 , i n R S 2 , o u t ) ) A S 2 ( t ) L S 2 ,
d Q L , S 1 ( t ) d t + 1 T 2 Q L , S 1 ( t ) = Q L , S 1 ( Spont ) + i 2 π m ω 0 ξ g ( α q ) [ ξ L S 1 2 π ( r L ( R m ) ) 2 + π ( r S 1 ( R m ) ) 2 ( ω L ω S 1 μ L μ S 1 L L L S 1 ) 1 / 2 A L ( t ) A S 1 ( t ) + δ L , S 1 ; S 1 , S 2 ξ m w 2 π r L ( R m ) r S 2 ( R m ) + π ( r S 1 ( R m ) ) 2 ( r L ( R m ) 2 r S 2 ( R m ) + r S 2 ( R m ) 2 r L ( R m ) ) ( ω S 1 ω S 2 μ S 1 μ S 2 L S 1 L S 2 ) 1 / 2 A S 1 ( t ) A S 2 ( t ) ] ,
Q S 1 , S 2 ( r , t ) t + 1 T 2 Q S 1 , S 2 ( r , t ) = Q S 1 , S 2 ( Spont ) + i 2 π m ω 0 ξ g ( α q ) [ ξ S 1 S 2 2 π ( r S 1 ( R m ) ) 2 + π ( r S 2 ( R m ) ) 2 ( ω S 1 ω S 2 μ S 1 μ S 2 L S 1 L S 2 ) 1 / 2 A S 1 ( t ) A S 2 ( t ) + δ L , S 1 ; S 1 , S 2 ξ m w 2 π r L ( R m ) r S 2 ( R m ) + π ( r S 1 ( R m ) ) 2 ( r L ( R m ) 2 r S 2 ( R m ) + r S 2 ( R m ) 2 r L ( R m ) ) ( ω L ω S 1 μ L μ S 1 L L L S 1 ) 1 / 2 A L ( t ) A S 1 ( t ) ] ,
δ L , S 1 ; S 1 , S 2 = sin ( Δ k L , S 1 ; S 1 , S 2 L ( R m ) + Δ φ L , S 1 ; S 1 , S 2 ) sin ( Δ φ L , S 1 ; S 1 , S 2 ) 2 Δ k L , S 1 ; S 1 , S 2 L ( R m ) ,
g ( ω S 1 ) = 4 π 2 T 2 ω S 1 μ L μ S 1 c 2 ω L m ω 0 N ( α q ) 2 ,
g ( ω S 2 ) = 4 π 2 T 2 ω S 2 μ L μ S 1 c 2 ω S 1 m ω 0 N ( α q ) 2 .
d n u ( r , t ) d t = n u ( r , t ) τ u l + η u η eff 2 π ( r P ( a m ) ) 2 exp ( 2 r 2 r P 2 ) 1 ω P W P c σ a m [ n u ( r , t ) n l ( r , t ) ] 2 π ( r L ( a m ) ) 2 exp ( 2 r 2 π ( r L ( a m ) ) 2 ) A L ( t ) A L ( t ) L L n u ( r , t ) f u n u m ( r , t ) τ u ,
d n u u ( r , t ) d t = ( 1 η u ) η eff 2 π ( r P ( a m ) ) 2 exp ( 2 r 2 r P 2 ) 1 ω P W P n u u ( r , t ) ( 1 f u ) n u m ( r , t ) τ u ,
d n l ( r , t ) d t = c σ a m [ n u ( r , t ) n l ( r , t ) ] 2 π ( r L ( a m ) ) 2 exp ( 2 r 2 π ( r L ( a m ) ) 2 ) A L ( t ) A L ( t ) L L n l ( r , t ) f l n l m ( r , t ) τ l + n u ( r , t ) τ u l ,
d n l l ( r , t ) d t = n l l ( r , t ) ( 1 f l ) n l m ( r , t ) τ l n l l ( r , t ) τ l g ,
d n a ( r , t ) d t = c n a ( r , t ) [ σ 13 , L 2 π ( r L ( s a ) ) 2 exp ( 2 r 2 π ( r L ( s a ) ) 2 ) A L ( t ) A L ( t ) L L + σ 13 , S 1 2 π ( r S 1 ( s a ) ) 2 exp ( 2 r 2 π ( r S 1 ( s a ) ) 2 ) A S 1 ( t ) A S 1 ( t ) L S 1 + σ 13 , S 2 2 π ( r S 2 ( s a ) ) 2 exp ( 2 r 2 π ( r S 2 ( s a ) ) 2 ) A S 2 ( t ) A S 2 ( t ) L S 2 ] n a 0 n a ( r , t ) τ 21 ,

Metrics