M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26, 1814–1826 (2009).

[CrossRef]

A. Luque, A. Marti, M. J. Mendes, and I. Tobias, “Light absorption in the near field around surface plasmon polaritons,” J. Appl. Phys. 104, 113118 (2008).

[CrossRef]

O. Keller, “Near-field photon wave mechanics in the Lorenz gauge,” Phys. Rev. A 76, 062110 (2007).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Grehan, and X. S. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

V. G. Farafonov and V. B. Il’in, “Scattering of light by axially symmetric particles: modification of the point-matching method,” Opt. Spectrosc. 100, 437–447 (2006).

[CrossRef]

L. A. Blanco and F. J. García de Abajo, “Spontaneous emission enhancement near nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 89, 37–42 (2004).

[CrossRef]

P. E. Falloon, P. C. Abbott, and J. B. Wang, “Theory and computation of spheroidal wavefunctions,” J. Phys. A 36, 5477–5495 (2003).

[CrossRef]

V. V. Somsikov and N. V. Voshchinnikov, “On the applicability of the Rayleigh approximation for coated spheroids in the near-infrared,” Astron. Astrophys. 345, 315–320 (1999).

L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E 58, 6792–6806 (1998).

[CrossRef]

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).

[CrossRef]

A. R. Sebak and B. P. Sinha, “Scattering by a conducting spheroidal object with dielectric coating at axial incidence,” IEEE Trans. Antennas Propag. 40, 268–274 (1992).

[CrossRef]

K. S. Joo and M. F. Iskander, “A new procedure of point-matching method for calculating the absorption and scattering of lossy dielectric objects,” IEEE Trans. Antennas Propag. 38, 1483–1490 (1990).

[CrossRef]

M. Nishimura, S. Takamatsu, and H. Shigesawa, “A numerical analysis of electromagnetic scattering of perfect conducting cylinders by means of discrete singularity method improved by optimization process,” Electron. Commun. Jpn. 67, 75–81 (1984).

[CrossRef]

J. C. Ravey and P. Mazeron, “Light-scattering in the physical optics approximation—application to large spheroids,” J. Opt. (Paris) 13, 273–282 (1982).

[CrossRef]

B. P. Sinha and R. H. Macphie, “Electromagnetic scattering by prolate spheroids for plane-waves with arbitrary polarization and angle of incidence,” Radio Sci. 12, 171–184 (1977).

[CrossRef]

J. A. Morrison and M. J. Cross, “Scattering of a plane electromagnetic-wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

T. Oguchi, “Attenuation and phase rotation of radio-waves due to rain—calculations at 19.3 and 34.8 GHz,” Radio Sci. 8, 31–38 (1973).

[CrossRef]

D. B. Hodge, “Eigenvalues and eigenfunctions of spheroidal wave equation,” J. Math. Phys. 11, 2308–2312 (1970).

[CrossRef]

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Berlin) 25, 377–445 (1908).

[CrossRef]

P. E. Falloon, P. C. Abbott, and J. B. Wang, “Theory and computation of spheroidal wavefunctions,” J. Phys. A 36, 5477–5495 (2003).

[CrossRef]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).

L. A. Blanco and F. J. García de Abajo, “Spontaneous emission enhancement near nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 89, 37–42 (2004).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999).

[PubMed]

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, 1997).

J. A. Morrison and M. J. Cross, “Scattering of a plane electromagnetic-wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).

[CrossRef]

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, 1997).

P. E. Falloon, P. C. Abbott, and J. B. Wang, “Theory and computation of spheroidal wavefunctions,” J. Phys. A 36, 5477–5495 (2003).

[CrossRef]

V. G. Farafonov and V. B. Il’in, “Scattering of light by axially symmetric particles: modification of the point-matching method,” Opt. Spectrosc. 100, 437–447 (2006).

[CrossRef]

C. Flammer, Spheroidal Wave Functions (Stanford U. Press, 1957).

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge Univ. Press, 1992).

E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” in 99th Annual Meeting of the American-Ceramic-Society (American Ceramic Society, 1997), pp. 469–479.

L. A. Blanco and F. J. García de Abajo, “Spontaneous emission enhancement near nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 89, 37–42 (2004).

[CrossRef]

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).

[CrossRef]

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, 1997).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

D. B. Hodge, “Eigenvalues and eigenfunctions of spheroidal wave equation,” J. Math. Phys. 11, 2308–2312 (1970).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

V. G. Farafonov and V. B. Il’in, “Scattering of light by axially symmetric particles: modification of the point-matching method,” Opt. Spectrosc. 100, 437–447 (2006).

[CrossRef]

K. S. Joo and M. F. Iskander, “A new procedure of point-matching method for calculating the absorption and scattering of lossy dielectric objects,” IEEE Trans. Antennas Propag. 38, 1483–1490 (1990).

[CrossRef]

K. S. Joo and M. F. Iskander, “A new procedure of point-matching method for calculating the absorption and scattering of lossy dielectric objects,” IEEE Trans. Antennas Propag. 38, 1483–1490 (1990).

[CrossRef]

L.-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory (Wiley, 2002).

O. Keller, “Near-field photon wave mechanics in the Lorenz gauge,” Phys. Rev. A 76, 062110 (2007).

[CrossRef]

L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E 58, 6792–6806 (1998).

[CrossRef]

L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E 58, 6792–6806 (1998).

[CrossRef]

L.-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory (Wiley, 2002).

L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E 58, 6792–6806 (1998).

[CrossRef]

L.-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory (Wiley, 2002).

A. C. Ludwig, “A comparison of spherical wave boundary-value matching versus integral-equation scattering solutions for a perfectly conducting body,” IEEE Trans. Antennas Propag. 34, 857–865 (1986).

[CrossRef]

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).

[CrossRef]

A. Luque, A. Marti, M. J. Mendes, and I. Tobias, “Light absorption in the near field around surface plasmon polaritons,” J. Appl. Phys. 104, 113118 (2008).

[CrossRef]

B. P. Sinha and R. H. Macphie, “Electromagnetic scattering by prolate spheroids for plane-waves with arbitrary polarization and angle of incidence,” Radio Sci. 12, 171–184 (1977).

[CrossRef]

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).

[CrossRef]

A. Luque, A. Marti, M. J. Mendes, and I. Tobias, “Light absorption in the near field around surface plasmon polaritons,” J. Appl. Phys. 104, 113118 (2008).

[CrossRef]

J. C. Ravey and P. Mazeron, “Light-scattering in the physical optics approximation—application to large spheroids,” J. Opt. (Paris) 13, 273–282 (1982).

[CrossRef]

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).

[CrossRef]

A. Luque, A. Marti, M. J. Mendes, and I. Tobias, “Light absorption in the near field around surface plasmon polaritons,” J. Appl. Phys. 104, 113118 (2008).

[CrossRef]

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Berlin) 25, 377–445 (1908).

[CrossRef]

J. A. Morrison and M. J. Cross, “Scattering of a plane electromagnetic-wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

M. Nishimura, S. Takamatsu, and H. Shigesawa, “A numerical analysis of electromagnetic scattering of perfect conducting cylinders by means of discrete singularity method improved by optimization process,” Electron. Commun. Jpn. 67, 75–81 (1984).

[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

T. Oguchi, “Attenuation and phase rotation of radio-waves due to rain—calculations at 19.3 and 34.8 GHz,” Radio Sci. 8, 31–38 (1973).

[CrossRef]

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge Univ. Press, 1992).

J. C. Ravey and P. Mazeron, “Light-scattering in the physical optics approximation—application to large spheroids,” J. Opt. (Paris) 13, 273–282 (1982).

[CrossRef]

A. R. Sebak and B. P. Sinha, “Scattering by a conducting spheroidal object with dielectric coating at axial incidence,” IEEE Trans. Antennas Propag. 40, 268–274 (1992).

[CrossRef]

M. Nishimura, S. Takamatsu, and H. Shigesawa, “A numerical analysis of electromagnetic scattering of perfect conducting cylinders by means of discrete singularity method improved by optimization process,” Electron. Commun. Jpn. 67, 75–81 (1984).

[CrossRef]

A. R. Sebak and B. P. Sinha, “Scattering by a conducting spheroidal object with dielectric coating at axial incidence,” IEEE Trans. Antennas Propag. 40, 268–274 (1992).

[CrossRef]

B. P. Sinha and R. H. Macphie, “Electromagnetic scattering by prolate spheroids for plane-waves with arbitrary polarization and angle of incidence,” Radio Sci. 12, 171–184 (1977).

[CrossRef]

V. V. Somsikov and N. V. Voshchinnikov, “On the applicability of the Rayleigh approximation for coated spheroids in the near-infrared,” Astron. Astrophys. 345, 315–320 (1999).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).

M. Nishimura, S. Takamatsu, and H. Shigesawa, “A numerical analysis of electromagnetic scattering of perfect conducting cylinders by means of discrete singularity method improved by optimization process,” Electron. Commun. Jpn. 67, 75–81 (1984).

[CrossRef]

L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E 58, 6792–6806 (1998).

[CrossRef]

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge Univ. Press, 1992).

E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” in 99th Annual Meeting of the American-Ceramic-Society (American Ceramic Society, 1997), pp. 469–479.

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).

[CrossRef]

A. Luque, A. Marti, M. J. Mendes, and I. Tobias, “Light absorption in the near field around surface plasmon polaritons,” J. Appl. Phys. 104, 113118 (2008).

[CrossRef]

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge Univ. Press, 1992).

V. V. Somsikov and N. V. Voshchinnikov, “On the applicability of the Rayleigh approximation for coated spheroids in the near-infrared,” Astron. Astrophys. 345, 315–320 (1999).

P. E. Falloon, P. C. Abbott, and J. B. Wang, “Theory and computation of spheroidal wavefunctions,” J. Phys. A 36, 5477–5495 (2003).

[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999).

[PubMed]

L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E 58, 6792–6806 (1998).

[CrossRef]

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Berlin) 25, 377–445 (1908).

[CrossRef]

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).

[CrossRef]

V. V. Somsikov and N. V. Voshchinnikov, “On the applicability of the Rayleigh approximation for coated spheroids in the near-infrared,” Astron. Astrophys. 345, 315–320 (1999).

J. A. Morrison and M. J. Cross, “Scattering of a plane electromagnetic-wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

M. Nishimura, S. Takamatsu, and H. Shigesawa, “A numerical analysis of electromagnetic scattering of perfect conducting cylinders by means of discrete singularity method improved by optimization process,” Electron. Commun. Jpn. 67, 75–81 (1984).

[CrossRef]

A. C. Ludwig, “A comparison of spherical wave boundary-value matching versus integral-equation scattering solutions for a perfectly conducting body,” IEEE Trans. Antennas Propag. 34, 857–865 (1986).

[CrossRef]

K. S. Joo and M. F. Iskander, “A new procedure of point-matching method for calculating the absorption and scattering of lossy dielectric objects,” IEEE Trans. Antennas Propag. 38, 1483–1490 (1990).

[CrossRef]

A. R. Sebak and B. P. Sinha, “Scattering by a conducting spheroidal object with dielectric coating at axial incidence,” IEEE Trans. Antennas Propag. 40, 268–274 (1992).

[CrossRef]

A. Luque, A. Marti, M. J. Mendes, and I. Tobias, “Light absorption in the near field around surface plasmon polaritons,” J. Appl. Phys. 104, 113118 (2008).

[CrossRef]

D. B. Hodge, “Eigenvalues and eigenfunctions of spheroidal wave equation,” J. Math. Phys. 11, 2308–2312 (1970).

[CrossRef]

J. C. Ravey and P. Mazeron, “Light-scattering in the physical optics approximation—application to large spheroids,” J. Opt. (Paris) 13, 273–282 (1982).

[CrossRef]

L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26, 1814–1826 (2009).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Grehan, and X. S. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

P. E. Falloon, P. C. Abbott, and J. B. Wang, “Theory and computation of spheroidal wavefunctions,” J. Phys. A 36, 5477–5495 (2003).

[CrossRef]

L. A. Blanco and F. J. García de Abajo, “Spontaneous emission enhancement near nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 89, 37–42 (2004).

[CrossRef]

V. G. Farafonov and V. B. Il’in, “Scattering of light by axially symmetric particles: modification of the point-matching method,” Opt. Spectrosc. 100, 437–447 (2006).

[CrossRef]

O. Keller, “Near-field photon wave mechanics in the Lorenz gauge,” Phys. Rev. A 76, 062110 (2007).

[CrossRef]

L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E 58, 6792–6806 (1998).

[CrossRef]

T. Oguchi, “Attenuation and phase rotation of radio-waves due to rain—calculations at 19.3 and 34.8 GHz,” Radio Sci. 8, 31–38 (1973).

[CrossRef]

B. P. Sinha and R. H. Macphie, “Electromagnetic scattering by prolate spheroids for plane-waves with arbitrary polarization and angle of incidence,” Radio Sci. 12, 171–184 (1977).

[CrossRef]

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).

[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

L.-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory (Wiley, 2002).

C. Flammer, Spheroidal Wave Functions (Stanford U. Press, 1957).

E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” in 99th Annual Meeting of the American-Ceramic-Society (American Ceramic Society, 1997), pp. 469–479.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999).

[PubMed]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge Univ. Press, 1992).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, 1997).