Abstract

High precision frequency measurements of I1272 hyperfine transitions in the wavelength range between 750 and 780 nm were performed employing an optical frequency comb. A Ti:sapphire laser is frequency stabilized to a hyperfine component of I2 using a Doppler-free frequency modulation technique, and an optical frequency comb is used to measure its frequency precisely. Improved absolute frequencies of 27 hyperfine transitions between 750 and 780 nm of the bands (0–12) and (0–13) of BΠ30u+XΣ1g+ system of I2 are presented. The relative uncertainty of the measurement is a few times 1010, limited by the frequency instability of the iodine-stabilized laser. The frequencies are compared to the predicted frequencies using the model description of [Eur. Phys. J. D 28, 199 (2004) ], which yields differences larger than expected. An improved model is developed for the range from 755 to 815 nm for the prediction of lines with an error limit of the absolute frequency less than 0.2 MHz.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
    [CrossRef]
  2. R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
    [CrossRef]
  3. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
    [CrossRef]
  4. W.-Y. Cheng and J.-T. Shy, “Wavelength standard at 543 nm and the corresponding I1272 hyperfine transitions,” J. Opt. Soc. Am. B 18, 363–369 (2001).
    [CrossRef]
  5. W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
    [CrossRef]
  6. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
    [CrossRef]
  7. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
    [CrossRef]
  8. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).
    [PubMed]
  9. S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode 11.000 cm−1–14.000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).
  10. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).
  11. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 Complément: Identification des transitions du systéme (B−X) assignments of the (B(I2))−X iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).
    [PubMed]
  12. S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule d’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).
  13. H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
    [PubMed]
  14. IodineSpec 4 program for calculation of iodine spectra. For the actual status of the program please contact knoeckel@iqo.uni-hannover.de.
  15. E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
    [CrossRef]
  16. H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
    [CrossRef]
  17. E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
    [CrossRef]
  18. G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
    [CrossRef]
  19. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  20. L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
    [CrossRef]
  21. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [CrossRef]
  22. W. R. C. Rowley and B. R. Marx, “Verification of iodine cells for stabilized lasers using the Hanle effect,” Metrologia 17, 65–66 (1981).
    [CrossRef]
  23. F. Spieweck, “Influence of small impurities in absorption cells of I2 stabilized lasers upon their frequency,” IEEE Trans. Instrum. Meas. 34, 246–248 (1985).
    [CrossRef]
  24. P. Gill and R. C. Thompson, “The preparation and analysis of iodine cells,” Metrologia 23, 161–166 (1987).
    [CrossRef]
  25. S. Fredin-Picard, “A study of contamination in I2127 cells using laser-induced fluorescence,” Metrologia 26, 235–244 (1989).
    [CrossRef]
  26. J.-M. Chartier, S. Picard-Fredin, and A. Chartier, “International comparison of iodine cells,” Metrologia 29, 361–367 (1992).
    [CrossRef]
  27. A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004).
    [CrossRef]
  28. J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009).
    [CrossRef]
  29. B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
    [CrossRef]
  30. Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
    [CrossRef]
  31. B. Bodermann, “Untersuchung zur Realisierung eines durchstimmbaren, hochpräzisen Frequenzstandards im NIR und zur Erweiterung des Spektralbereiches mit Hilfe des I1272-Moleküls,” Ph.D. dissertation (Universität Hannover, 1998).
  32. S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
    [CrossRef]
  33. B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I1272 spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
    [CrossRef]

2009 (1)

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009).
[CrossRef]

2008 (1)

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

2007 (1)

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

2006 (1)

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

2005 (1)

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

2004 (2)

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004).
[CrossRef]

2003 (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

2002 (2)

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I1272 spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

2001 (2)

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

W.-Y. Cheng and J.-T. Shy, “Wavelength standard at 543 nm and the corresponding I1272 hyperfine transitions,” J. Opt. Soc. Am. B 18, 363–369 (2001).
[CrossRef]

2000 (1)

B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
[CrossRef]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

1996 (1)

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

1995 (1)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

1994 (1)

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

1992 (1)

J.-M. Chartier, S. Picard-Fredin, and A. Chartier, “International comparison of iodine cells,” Metrologia 29, 361–367 (1992).
[CrossRef]

1989 (1)

S. Fredin-Picard, “A study of contamination in I2127 cells using laser-induced fluorescence,” Metrologia 26, 235–244 (1989).
[CrossRef]

1987 (1)

P. Gill and R. C. Thompson, “The preparation and analysis of iodine cells,” Metrologia 23, 161–166 (1987).
[CrossRef]

1985 (1)

F. Spieweck, “Influence of small impurities in absorption cells of I2 stabilized lasers upon their frequency,” IEEE Trans. Instrum. Meas. 34, 246–248 (1985).
[CrossRef]

1981 (3)

W. R. C. Rowley and B. R. Marx, “Verification of iodine cells for stabilized lasers using the Hanle effect,” Metrologia 17, 65–66 (1981).
[CrossRef]

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

1936 (1)

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Baba, M.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Barwood, G. P.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Bernhardt, B.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[CrossRef]

Bodermann, B.

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I1272 spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
[CrossRef]

B. Bodermann, “Untersuchung zur Realisierung eines durchstimmbaren, hochpräzisen Frequenzstandards im NIR und zur Erweiterung des Spektralbereiches mit Hilfe des I1272-Moleküls,” Ph.D. dissertation (Universität Hannover, 1998).

Bönsch, G.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Boyko, O. V.

A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004).
[CrossRef]

Chartier, A.

J.-M. Chartier, S. Picard-Fredin, and A. Chartier, “International comparison of iodine cells,” Metrologia 29, 361–367 (1992).
[CrossRef]

Chartier, J. -M.

J.-M. Chartier, S. Picard-Fredin, and A. Chartier, “International comparison of iodine cells,” Metrologia 29, 361–367 (1992).
[CrossRef]

Chen, L.

Cheng, W. -Y.

Chevillard, J.

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode 11.000 cm−1–14.000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

Cíp, O.

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009).
[CrossRef]

Dickopf, S.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Edwards, C. S.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Eickhoff, M. L.

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

Eikema, K. S. E.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Felder, R.

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

Fraser, L. H. D.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Fredin-Picard, S.

S. Fredin-Picard, “A study of contamination in I2127 cells using laser-induced fluorescence,” Metrologia 26, 235–244 (1989).
[CrossRef]

Fujita, N.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Fujiwara, C.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Geppert, C.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 Complément: Identification des transitions du systéme (B−X) assignments of the (B(I2))−X iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).
[PubMed]

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode 11.000 cm−1–14.000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).
[PubMed]

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule d’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

Gill, P.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

P. Gill and R. C. Thompson, “The preparation and analysis of iodine cells,” Metrologia 23, 161–166 (1987).
[CrossRef]

Gillespie, L. J.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Grieser, R.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Hall, J. L.

W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hollenstein, U.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Holzwarth, R.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Hong, F. -L.

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

Hrabina, J.

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009).
[CrossRef]

Huber, G.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Ikeuchi, M.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Ishikawa, J.

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

Ishikawa, K.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Jedlicka, P.

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009).
[CrossRef]

Kabir, M. H.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Kachalova, N. M.

A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004).
[CrossRef]

Karpuk, S.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Kasahara, S.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Kato, H.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Khodakovskii, V. M.

A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004).
[CrossRef]

Kimura, Y.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Klein, R.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Klug, M.

B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
[CrossRef]

Knöckel, H.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I1272 spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
[CrossRef]

Kuwano, H.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Lazar, J.

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[CrossRef]

Luc, P.

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 Complément: Identification des transitions du systéme (B−X) assignments of the (B(I2))−X iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).
[PubMed]

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).
[PubMed]

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule d’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

Marx, B. R.

W. R. C. Rowley and B. R. Marx, “Verification of iodine cells for stabilized lasers using the Hanle effect,” Metrologia 17, 65–66 (1981).
[CrossRef]

Matsunobu, Y.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Merz, P.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Miski-Oglu, N.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Misono, M.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Negriyko, A. M.

A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004).
[CrossRef]

Nicolaus, A.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Nortershauser, W.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Novotny, C.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

O’Reilly, J.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Picard-Fredin, S.

J.-M. Chartier, S. Picard-Fredin, and A. Chartier, “International comparison of iodine cells,” Metrologia 29, 361–367 (1992).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

Reinhardt, S.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Rodríguez-Llorente, F.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Rowley, W. R. C.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

W. R. C. Rowley and B. R. Marx, “Verification of iodine cells for stabilized lasers using the Hanle effect,” Metrologia 17, 65–66 (1981).
[CrossRef]

Salumbides, E. J.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Schnatz, H.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Shimamoto, T.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Shinano, T.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Shy, J. -T.

Spieweck, F.

F. Spieweck, “Influence of small impurities in absorption cells of I2 stabilized lasers upon their frequency,” IEEE Trans. Instrum. Meas. 34, 246–248 (1985).
[CrossRef]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Takahashi, R.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Thompson, R. C.

P. Gill and R. C. Thompson, “The preparation and analysis of iodine cells,” Metrologia 23, 161–166 (1987).
[CrossRef]

Tiemann, E.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I1272 spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
[CrossRef]

Ubachs, W.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Udem, T.

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Ushino, M.

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

Verges, J.

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode 11.000 cm−1–14.000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule d’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

Winkelhoff, U.

B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
[CrossRef]

Ye, J.

Yoon, T. H.

Zhang, Y.

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

Appl. Phys. B (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Eur. Phys. J. D (4)

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
[CrossRef]

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I1272 spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

F. Spieweck, “Influence of small impurities in absorption cells of I2 stabilized lasers upon their frequency,” IEEE Trans. Instrum. Meas. 34, 246–248 (1985).
[CrossRef]

J. Am. Chem. Soc. (1)

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

J. Opt. Soc. Am. B (1)

Metrologia (7)

W. R. C. Rowley and B. R. Marx, “Verification of iodine cells for stabilized lasers using the Hanle effect,” Metrologia 17, 65–66 (1981).
[CrossRef]

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009).
[CrossRef]

P. Gill and R. C. Thompson, “The preparation and analysis of iodine cells,” Metrologia 23, 161–166 (1987).
[CrossRef]

S. Fredin-Picard, “A study of contamination in I2127 cells using laser-induced fluorescence,” Metrologia 26, 235–244 (1989).
[CrossRef]

J.-M. Chartier, S. Picard-Fredin, and A. Chartier, “International comparison of iodine cells,” Metrologia 29, 361–367 (1992).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

Mol. Phys. (1)

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Opt. Commun. (3)

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[CrossRef]

Quantum Electron. (1)

A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004).
[CrossRef]

Z. Phys. A: Hadrons Nucl. (1)

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994).
[CrossRef]

Other (8)

B. Bodermann, “Untersuchung zur Realisierung eines durchstimmbaren, hochpräzisen Frequenzstandards im NIR und zur Erweiterung des Spektralbereiches mit Hilfe des I1272-Moleküls,” Ph.D. dissertation (Universität Hannover, 1998).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).
[PubMed]

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode 11.000 cm−1–14.000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 Complément: Identification des transitions du systéme (B−X) assignments of the (B(I2))−X iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).
[PubMed]

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule d’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000).
[PubMed]

IodineSpec 4 program for calculation of iodine spectra. For the actual status of the program please contact knoeckel@iqo.uni-hannover.de.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Iodine stabilization of Ti:sapphire laser: HWP, half-wave plate; OI, optical isolator; BS, beam splitter; PBS, polarizing beam splitter; PD, photodetector; OFC, optical frequency comb.

Fig. 2
Fig. 2

The experimental arrangement of the absolute frequency measurement of iodine transitions at 778 nm: DM, dichroic mirror; PBS, polarizing beam splitter; HWP, half-wave plate; PLL, phase-locked loop; APD, avalanche photodiode; OFC, femtosecond optical frequency comb.

Fig. 3
Fig. 3

Hyperfine spectrum of the measured iodine transition R ( 26 ) (0–14) ( a 1 a 15 : the components of hyperfine structure). The S/N is larger about 200.

Fig. 4
Fig. 4

1 σ prediction uncertainties for the bands (0–12) to (0–17), covering the wavelength range from 755 to 815 nm. The symbols correspond to lines with rotational quantum numbers from lower to higher wavelengths of J = 20 , 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 160, 180, 200, 220, 240.

Tables (3)

Tables Icon

Table 1 Comparison of Frequencies of Iodine Lines Measured with the OFC with Frequencies from Bodermann et al. [29]

Tables Icon

Table 2 Comparison of Frequencies from the Present Experiment with the Predictions from the Dunham Parameter [29] and Potential [29] Model Approaches for the Description of the Iodine Spectrum a

Tables Icon

Table 3 Improved Dunham Parameters for High Precision Description of the Wavelength Range 755–815 nm for the Bands (0–12) to (0–17) of I 127 2 a

Metrics