Abstract

Ultraviolet-blue upconversion (UC) radiations of Ho3+ ions at 240, 290, 360, 385, 418, 445, 485nm were observed in hexagonal NaYF4:Yb3+Ho3+ powders under diode laser excitation of 970nm. UC mechanism analyses illustrate that successive energy transfers from Yb3+ to Ho3+ generate emissions at 240, 360, 385, and 418nm, while cross relaxations between Ho3+ ions evoke UC emissions at 290 and 445nm. Power dependence analyses indicate that these UC emissions already have intense saturation effects even at low-power density range of 0.338Wcm2. Theoretical calculations based on steady-state equations demonstrate the proposed UC mechanisms and explain well the observed saturation effects.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
    [CrossRef] [PubMed]
  2. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
    [CrossRef]
  3. J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
    [CrossRef]
  4. X. B. Chen, and Z. F. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007).
    [CrossRef]
  5. G. Y. Chen, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 induced by infrared diode laser excitation,” Opt. Lett. 32, 87–89 (2007).
    [CrossRef]
  6. L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
    [CrossRef]
  7. C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. D. Wei, G. F. Wang, R. Kim, and L. L. Wang, “Ultraviolet upconversion emissions of Gd3+,” Opt. Lett. 33, 857–859 (2008).
    [CrossRef] [PubMed]
  8. G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Near vacuum ultraviolet luminescence of Gd3+ and Er3+ ions generated by super saturation upconversion processes,” Opt. Express 17, 16366–16371 (2009).
    [CrossRef] [PubMed]
  9. X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
    [CrossRef]
  10. E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
    [CrossRef]
  11. P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
    [CrossRef]
  12. F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
    [CrossRef]
  13. G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
    [CrossRef]
  14. J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
    [CrossRef]
  15. I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
    [CrossRef]
  16. A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
    [CrossRef]
  17. L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
    [CrossRef]
  18. N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
    [CrossRef]
  19. K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
    [CrossRef]
  20. V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
    [CrossRef]
  21. F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
    [CrossRef]
  22. M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
    [CrossRef]
  23. J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
    [CrossRef]
  24. W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
    [CrossRef]
  25. M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
    [CrossRef]
  26. X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
    [CrossRef]
  27. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
    [CrossRef]
  28. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
    [CrossRef]

2009 (1)

2008 (5)

C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. D. Wei, G. F. Wang, R. Kim, and L. L. Wang, “Ultraviolet upconversion emissions of Gd3+,” Opt. Lett. 33, 857–859 (2008).
[CrossRef] [PubMed]

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

2007 (6)

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

G. Y. Chen, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 induced by infrared diode laser excitation,” Opt. Lett. 32, 87–89 (2007).
[CrossRef]

X. B. Chen, and Z. F. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007).
[CrossRef]

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

2006 (1)

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

2005 (6)

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

2004 (5)

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
[CrossRef] [PubMed]

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

2002 (1)

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

1998 (1)

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

1988 (1)

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

1968 (1)

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Aebischer, A.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Alonso, D.

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

An, L. Q.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Angeles, C.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Arai, Y.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
[CrossRef] [PubMed]

Bettinelli, M.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Biner, D.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Boyer, J. C.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Bu, Y.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Bu, Y. Y.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Bueno, L. A.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Cáceres, J. M.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

Calvilla-Quintero, J. M.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

Cao, C. Y.

Capobianco, J. A.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Carnal, W. T.

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Chen, G. Y.

Chen, X. B.

da Costa, E. B.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Darbandi, M.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

de la Rosa, E.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Desirena, H.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Ding, J. W.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Ehlert, O.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Esterowitz, L.

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

Fields, P. R.

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Gilliland, G. D.

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

Giri, N. K.

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Grimm, J.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Güdel, H. U.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Heer, S.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Hölsä, J.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Huang, L. H.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Huang, P.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Jose, R.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Ju, Y. G.

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

Kaczkan, M.

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Kim, R.

Klocek, G.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

Kowalska, M.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

Krämer, K. W.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Lahoz, F.

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

Lamminmäki, R. J.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Lavín, V.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Li, Y.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Liang, H. J.

Liu, H. C.

Liu, M.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Lu, L. P.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Malinowski, M.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Martin, I. R.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

Martín, I. R.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Meijerink, A.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Nann, T.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Ohishi, Y.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Peijzel, P. S.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Piramidowicz, R.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

Powell, R. C.

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

Qin, W. P.

Rai, D. K.

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

Rai, S. B.

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

Rajnak, K.

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Reinhard, C.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Ribeiro, S. J. L.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Rodríguez, R. A.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Rodríguez, V. D.

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Rodríguez-Mendoza, U. R.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Salas, P.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Shan, J. N.

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

Somesfalean, G.

Song, Z. F.

Speghini, A.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Sun, Q.

Suyer, J. F.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Suzuki, T.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Szufliñska, M.

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Thomann, R.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Vetrone, F.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Wang, F. P.

Wang, G. F.

Wang, L. L.

Wang, S. W.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Wang, X.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Wang, X. F.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Wang, Y.

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Wegh, R. T.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Wei, G. D.

Wnuk, A.

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Xiao, S.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Xiao, S. G.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Yamashita, T.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Yang, K. S.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Yang, X.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Yang, X. L.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Ye, C. H.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Yu, C. Y.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Zhang, J.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Zhang, J. S.

Zhang, X. Y.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Zhang, Z. G.

Zhu, P. F.

ACS Nano (1)

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Appl. Phys. B (2)

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
[CrossRef] [PubMed]

J. Alloys Compd. (2)

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

J. Chem. Phys. (1)

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

J. Lumin. (3)

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Rare Earths (1)

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Opt. Commun. (1)

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (2)

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Phys. Rev. B (3)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level diagrams of Ho 3 + and Yb 3 + ions as well as the proposed UC mechanisms.

Fig. 2
Fig. 2

Measured XRD pattern of (a) Na Y F 4 powders doped with Yb 3 + 20 mol % , Ho 3 + 2 mol . % contrasted with the standard (b) hexagonal structure of JCPDS 16-0334 and (c) cubic structure of JCPDS 06-0342. The inset is a TEM image of the prepared powders.

Fig. 3
Fig. 3

Measured UV UC radiations in the spectroscopic range of 220 320 nm of Na Y F 4 : Yb 3 + Ho 3 + powders under 970 nm diode laser excitation of 37 W cm 2 . The inset displays the pump power dependence of the 290 nm UV UC radiations.

Fig. 4
Fig. 4

Measured UV-blue UC radiations in the spectroscopic range of 320 520 nm of Na Y F 4 : Yb 3 + Ho 3 + powders under 970 nm diode laser excitation of 37 W cm 2 . The inset presents UC radiations of Ho 3 + ions in the spectroscopic range of 520 800 nm under diode laser excitation of 37 W cm 2 .

Fig. 5
Fig. 5

Pump power dependences of all UC fluorescent emissions in Fig. 4 in Na Y F 4 : Yb 3 + Ho 3 + powders.

Tables (1)

Tables Icon

Table 1 Experimental Slopes ( n ) for Different Emissions in Na Y F 4 : Yb 3 + ( 20 % ) Ho 3 + (2%) Powders under 970 nm Diode Laser Excitation

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I f P n ,
0 = W 0 N Yb 1 N 0 R 1 N 1 W 1 N Yb 1 N 1 ,
0 = W 1 N Yb 1 N 1 R 4 N 4 ,
0 = Q 6 N 6 + C N 7 2 R 5 N 5 ,
0 = W 2 N Yb 1 N 2 R 6 N 6 W 6 N Yb 1 N 6 ,
0 = W 3 N Yb 1 N 3 2 C N 7 2 R 7 N 7 ,
0 = C N 7 2 R 8 N 8 W 8 N Yb 1 N 8 ,
N Yb 1 = σ I N Yb 0 ,
N 4 = W 0 W 1 N 0 R 1 R 4 N Yb 1 2 I 2 ,
N 5 = Q 6 W 2 R 5 R 6 N 2 N Yb 1 I 2 ,
N 6 = W 2 R 6 N 2 N Yb 1 I 2 ,
N 7 = W 3 R 7 N 3 N Yb 1 I 2 ,
N 8 = C R 8 N 7 2 I 4 .
N 4 = W 0 N 0 R 4 N Yb 1 I ,
N 5 = C R 5 N 7 2 = W 3 2 R 5 N 3 N Yb 1 I 2 ,
N 6 = W 2 W 6 N 2 I ,
N 7 = ( W 3 N 3 N Yb 1 2 C ) 1 2 I ,
N 8 = C R 8 N 7 2 I 2 .

Metrics