Abstract

Ultraviolet-blue upconversion (UC) radiations of Ho3+ ions at 240, 290, 360, 385, 418, 445, 485nm were observed in hexagonal NaYF4:Yb3+Ho3+ powders under diode laser excitation of 970nm. UC mechanism analyses illustrate that successive energy transfers from Yb3+ to Ho3+ generate emissions at 240, 360, 385, and 418nm, while cross relaxations between Ho3+ ions evoke UC emissions at 290 and 445nm. Power dependence analyses indicate that these UC emissions already have intense saturation effects even at low-power density range of 0.338Wcm2. Theoretical calculations based on steady-state equations demonstrate the proposed UC mechanisms and explain well the observed saturation effects.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
    [CrossRef] [PubMed]
  2. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
    [CrossRef]
  3. J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
    [CrossRef]
  4. X. B. Chen, and Z. F. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007).
    [CrossRef]
  5. G. Y. Chen, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 induced by infrared diode laser excitation,” Opt. Lett. 32, 87–89 (2007).
    [CrossRef]
  6. L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
    [CrossRef]
  7. C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. D. Wei, G. F. Wang, R. Kim, and L. L. Wang, “Ultraviolet upconversion emissions of Gd3+,” Opt. Lett. 33, 857–859 (2008).
    [CrossRef] [PubMed]
  8. G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Near vacuum ultraviolet luminescence of Gd3+ and Er3+ ions generated by super saturation upconversion processes,” Opt. Express 17, 16366–16371 (2009).
    [CrossRef] [PubMed]
  9. X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
    [CrossRef]
  10. E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
    [CrossRef]
  11. P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
    [CrossRef]
  12. F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
    [CrossRef]
  13. G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
    [CrossRef]
  14. J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
    [CrossRef]
  15. I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
    [CrossRef]
  16. A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
    [CrossRef]
  17. L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
    [CrossRef]
  18. N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
    [CrossRef]
  19. K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
    [CrossRef]
  20. V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
    [CrossRef]
  21. F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
    [CrossRef]
  22. M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
    [CrossRef]
  23. J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
    [CrossRef]
  24. W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
    [CrossRef]
  25. M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
    [CrossRef]
  26. X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
    [CrossRef]
  27. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
    [CrossRef]
  28. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
    [CrossRef]

2009 (1)

2008 (5)

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. D. Wei, G. F. Wang, R. Kim, and L. L. Wang, “Ultraviolet upconversion emissions of Gd3+,” Opt. Lett. 33, 857–859 (2008).
[CrossRef] [PubMed]

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

2007 (6)

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

X. B. Chen, and Z. F. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007).
[CrossRef]

G. Y. Chen, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 induced by infrared diode laser excitation,” Opt. Lett. 32, 87–89 (2007).
[CrossRef]

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

2006 (1)

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

2005 (6)

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

2004 (5)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

2002 (1)

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

1998 (1)

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

1988 (1)

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

1968 (1)

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Aebischer, A.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Alonso, D.

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

An, L. Q.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Angeles, C.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Arai, Y.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
[CrossRef] [PubMed]

Bettinelli, M.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Biner, D.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Boyer, J. C.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Bu, Y.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Bu, Y. Y.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Bueno, L. A.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Cáceres, J. M.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

Calvilla-Quintero, J. M.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

Cao, C. Y.

Capobianco, J. A.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Carnal, W. T.

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Chen, G. Y.

Chen, X. B.

da Costa, E. B.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Darbandi, M.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

de la Rosa, E.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Desirena, H.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Ding, J. W.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Ehlert, O.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Esterowitz, L.

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

Fields, P. R.

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Gilliland, G. D.

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

Giri, N. K.

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Grimm, J.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Güdel, H. U.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Heer, S.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Hölsä, J.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Huang, L. H.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Huang, P.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Jose, R.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Ju, Y. G.

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

Kaczkan, M.

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Kim, R.

Klocek, G.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

Kowalska, M.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

Krämer, K. W.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Lahoz, F.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

Lamminmäki, R. J.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Lavín, V.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Li, Y.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Liang, H. J.

Liu, H. C.

Liu, M.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Lu, L. P.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Malinowski, M.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Martin, I. R.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

Martín, I. R.

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Meijerink, A.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Nann, T.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Ohishi, Y.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Peijzel, P. S.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Piramidowicz, R.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

Powell, R. C.

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

Qin, W. P.

Rai, D. K.

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

Rai, S. B.

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

Rajnak, K.

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Reinhard, C.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Ribeiro, S. J. L.

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

Rodríguez, R. A.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Rodríguez, V. D.

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Rodríguez-Mendoza, U. R.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

Salas, P.

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

Shan, J. N.

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

Somesfalean, G.

Song, Z. F.

Speghini, A.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Sun, Q.

Suyer, J. F.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Suzuki, T.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Szufliñska, M.

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Thomann, R.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Vetrone, F.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Wang, F. P.

Wang, G. F.

Wang, L. L.

Wang, S. W.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Wang, X.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Wang, X. F.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Wang, Y.

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Wegh, R. T.

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Wei, G. D.

Wnuk, A.

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

Xiao, S.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Xiao, S. G.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Yamashita, T.

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

Yang, K. S.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Yang, X.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Yang, X. L.

X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008).
[CrossRef]

Ye, C. H.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Yu, C. Y.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Zhang, J.

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

Zhang, J. S.

Zhang, X. Y.

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Zhang, Z. G.

Zhu, P. F.

ACS Nano (1)

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008).
[CrossRef]

Appl. Phys. B (2)

N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008).
[CrossRef]

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005).
[CrossRef]

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007).
[CrossRef]

J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004).
[CrossRef] [PubMed]

J. Alloys Compd. (2)

I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998).
[CrossRef]

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004).
[CrossRef]

J. Chem. Phys. (1)

W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

J. Lumin. (3)

M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004).
[CrossRef]

A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004).
[CrossRef]

L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Rare Earths (1)

K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006).
[CrossRef]

Opt. Commun. (1)

P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (2)

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[CrossRef]

Phys. Rev. B (3)

G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988).
[CrossRef]

F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level diagrams of Ho 3 + and Yb 3 + ions as well as the proposed UC mechanisms.

Fig. 2
Fig. 2

Measured XRD pattern of (a) Na Y F 4 powders doped with Yb 3 + 20 mol % , Ho 3 + 2 mol . % contrasted with the standard (b) hexagonal structure of JCPDS 16-0334 and (c) cubic structure of JCPDS 06-0342. The inset is a TEM image of the prepared powders.

Fig. 3
Fig. 3

Measured UV UC radiations in the spectroscopic range of 220 320 nm of Na Y F 4 : Yb 3 + Ho 3 + powders under 970 nm diode laser excitation of 37 W cm 2 . The inset displays the pump power dependence of the 290 nm UV UC radiations.

Fig. 4
Fig. 4

Measured UV-blue UC radiations in the spectroscopic range of 320 520 nm of Na Y F 4 : Yb 3 + Ho 3 + powders under 970 nm diode laser excitation of 37 W cm 2 . The inset presents UC radiations of Ho 3 + ions in the spectroscopic range of 520 800 nm under diode laser excitation of 37 W cm 2 .

Fig. 5
Fig. 5

Pump power dependences of all UC fluorescent emissions in Fig. 4 in Na Y F 4 : Yb 3 + Ho 3 + powders.

Tables (1)

Tables Icon

Table 1 Experimental Slopes ( n ) for Different Emissions in Na Y F 4 : Yb 3 + ( 20 % ) Ho 3 + (2%) Powders under 970 nm Diode Laser Excitation

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I f P n ,
0 = W 0 N Yb 1 N 0 R 1 N 1 W 1 N Yb 1 N 1 ,
0 = W 1 N Yb 1 N 1 R 4 N 4 ,
0 = Q 6 N 6 + C N 7 2 R 5 N 5 ,
0 = W 2 N Yb 1 N 2 R 6 N 6 W 6 N Yb 1 N 6 ,
0 = W 3 N Yb 1 N 3 2 C N 7 2 R 7 N 7 ,
0 = C N 7 2 R 8 N 8 W 8 N Yb 1 N 8 ,
N Yb 1 = σ I N Yb 0 ,
N 4 = W 0 W 1 N 0 R 1 R 4 N Yb 1 2 I 2 ,
N 5 = Q 6 W 2 R 5 R 6 N 2 N Yb 1 I 2 ,
N 6 = W 2 R 6 N 2 N Yb 1 I 2 ,
N 7 = W 3 R 7 N 3 N Yb 1 I 2 ,
N 8 = C R 8 N 7 2 I 4 .
N 4 = W 0 N 0 R 4 N Yb 1 I ,
N 5 = C R 5 N 7 2 = W 3 2 R 5 N 3 N Yb 1 I 2 ,
N 6 = W 2 W 6 N 2 I ,
N 7 = ( W 3 N 3 N Yb 1 2 C ) 1 2 I ,
N 8 = C R 8 N 7 2 I 2 .

Metrics