Abstract

We first analyze the equivalent circuit parameters of linear wire optical nano-antennas in uniaxial anisotropic media. We then exploit the electro-optic response of a bipolar nematic liquid crystal to demonstrate tuning of an optical antenna using a low frequency external electric field as the control mechanism.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  4. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  5. A. Alù, and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
    [CrossRef] [PubMed]
  6. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
    [CrossRef]
  7. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
    [CrossRef]
  8. R. L. Olmon, P. M. Krenza, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid infrared,” Opt. Express 16, 20295–20305 (2008).
    [CrossRef] [PubMed]
  9. R. A. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express 17, 20063–20068 (2009).
    [CrossRef] [PubMed]
  10. D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
    [CrossRef] [PubMed]
  11. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  12. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement by the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
    [CrossRef] [PubMed]
  13. G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
    [CrossRef] [PubMed]
  14. A. Locatelli, C. De Angelis, D. Modotto, S. Boscolo, F. Sacchetto, M. Midrio, A. D. Capobianco, F. M. Pigozzo, and C. G. Someda, “Modeling of enhanced field confinement and scattering by optical wire antennas,” Opt. Express 17, 16792–16800 (2009).
    [CrossRef] [PubMed]
  15. S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
    [CrossRef] [PubMed]
  16. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
    [CrossRef]
  17. J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
    [CrossRef]
  18. J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
    [CrossRef] [PubMed]
  19. A. Fernandez-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
    [CrossRef] [PubMed]
  20. T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
    [CrossRef]
  21. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
    [CrossRef] [PubMed]
  22. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
    [CrossRef] [PubMed]
  23. COMSOL Multiphysics, 3.5, COMSOL Inc., http://www.comsol.com/.
  24. CST Microwave Studio 2009, Darmstadt, Germany.
  25. C. A. Balanis, Antenna Theory, 3rd ed. (Wiley, 2005).
  26. S. J. Orfanidis, Electromagnetic Waves and Antennas (2008); available online at http://www.ece.rutgers.edu/~orfanidi/ewa/.
  27. J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
    [CrossRef] [PubMed]
  28. L. Novotny, “Optical antennas tuned to pitch,” Nature 455, 887 (2008).
    [CrossRef]
  29. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
    [CrossRef] [PubMed]

2009 (8)

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
[CrossRef] [PubMed]

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

A. Locatelli, C. De Angelis, D. Modotto, S. Boscolo, F. Sacchetto, M. Midrio, A. D. Capobianco, F. M. Pigozzo, and C. G. Someda, “Modeling of enhanced field confinement and scattering by optical wire antennas,” Opt. Express 17, 16792–16800 (2009).
[CrossRef] [PubMed]

R. A. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express 17, 20063–20068 (2009).
[CrossRef] [PubMed]

2008 (7)

R. L. Olmon, P. M. Krenza, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid infrared,” Opt. Express 16, 20295–20305 (2008).
[CrossRef] [PubMed]

L. Novotny, “Optical antennas tuned to pitch,” Nature 455, 887 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

A. Alù, and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

2007 (2)

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement by the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
[CrossRef]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2005 (4)

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

2004 (1)

A. Fernandez-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

2002 (1)

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Alù, A.

A. Alù, and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Astrova, E. V.

T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
[CrossRef]

Bachelot, R.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Balanis, C. A.

C. A. Balanis, Antenna Theory, 3rd ed. (Wiley, 2005).

Baudrion, A. L.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Berthelot, J.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Bharadwaj, P.

Biagioni, P.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Boreman, G. D.

Boscolo, S.

Bouhelier, A.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Capobianco, A. D.

Cherukulappurath, S.

G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
[CrossRef] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Cialla, D.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Colas-des-Francs, G.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Davoyan, R. A.

de Abajo, F. J. G.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

De Angelis, C.

Dereux, A.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Deutsch, B.

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Dietzek, B.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

El Ahrach, H. I.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Engheta, N.

A. Alù, and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Feichtner, T.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Feldmann, J.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Fernandez-Nieves, A.

A. Fernandez-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

Finot, E.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement by the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Greffet, J. J.

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Hecht, B.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Huang, C. J.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Huang, J. S.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Hubner, U.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Jones, A. C.

Kivshar, Y. S.

Klar, T. A.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Kostcheev, S.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Krenza, P. M.

Link, D. R.

A. Fernandez-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

Locatelli, A.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Margueritat, J.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mattheis, R.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Midrio, M.

Modotto, D.

Molina-Terriza, G.

G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
[CrossRef] [PubMed]

Moller, R.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Muller, J.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement by the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Novotny, L.

O’Neill, S. M.

T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
[CrossRef]

Olmon, R. L.

Orfanidis, S. J.

S. J. Orfanidis, Electromagnetic Waves and Antennas (2008); available online at http://www.ece.rutgers.edu/~orfanidi/ewa/.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Park, S. Y.

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef] [PubMed]

Parramon, R. J.

G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
[CrossRef] [PubMed]

Perova, T. S.

T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
[CrossRef]

Pertsch, T.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Peschel, U.

Petschulat, J.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Pigozzo, F. M.

Plain, J.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Popp, J.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Quidant, R.

G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
[CrossRef] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Raschke, M. B.

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rivas, J. G.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement by the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Romanov, S.

Royer, P.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Rudhardt, D.

A. Fernandez-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

Sacchetto, F.

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement by the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Schneidewind, H.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Shadrivov, I. V.

Siebert, R.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Someda, C. G.

Sonnichsen, C.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Stroud, D.

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Tolmachev, V. A.

T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
[CrossRef]

Tunnermann, A.

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Volpe, G.

G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
[CrossRef] [PubMed]

von Plessen, G.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

von Poschinger, H.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Weeber, J. C.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Weitz, D. A.

A. Fernandez-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

Wen, J.

Wiederrecht, G. P.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Zharova, Yu. A.

T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
[CrossRef]

Adv. Opt. Photon. (1)

Anal. Bioanal. Chem. (1)

D. Cialla, R. Siebert, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tunnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Nano Lett. (5)

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. El Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement by the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009).
[CrossRef] [PubMed]

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Nat. Photonics (2)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Nature (1)

L. Novotny, “Optical antennas tuned to pitch,” Nature 455, 887 (2008).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (1)

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef] [PubMed]

A. Fernandez-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

A. Alù, and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi C (1)

T. S. Perova, V. A. Tolmachev, E. V. Astrova, Yu. A. Zharova, and S. M. O’Neill, “Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7,” Phys. Status Solidi C 4, 1961–1965 (2007).
[CrossRef]

Science (3)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Other (5)

COMSOL Multiphysics, 3.5, COMSOL Inc., http://www.comsol.com/.

CST Microwave Studio 2009, Darmstadt, Germany.

C. A. Balanis, Antenna Theory, 3rd ed. (Wiley, 2005).

S. J. Orfanidis, Electromagnetic Waves and Antennas (2008); available online at http://www.ece.rutgers.edu/~orfanidi/ewa/.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the cylindrical antenna (gray) inside the LC cell. The source (or the receiver) is intended to be in the gap of thickness g = 2   nm ; the director of the nematic LC can be oriented in the ( x , z ) plane by controlling the applied voltage V.

Fig. 2
Fig. 2

Thévenin equivalent circuit in the receiving mode: Z A , self-impedance of the antenna; V oc , open-circuit voltage; Z L , load impedance.

Fig. 3
Fig. 3

(a) R A = R e ( Z A ) , (b) X A = I m ( Z A ) calculated from finite element method simulations: continuous (dashed) blue lines refer to the LC directors oriented orthogonal (parallel) to the wire antenna. The dashed–dotted red line refers to an isotropic medium with n = n e = 1.75 , while the dotted red line refers to an isotropic medium with n = n o = 1.49 .

Fig. 4
Fig. 4

(a) Effective length: continuous (dashed) blue lines correspond to the LC director oriented orthogonal (parallel) to the wire antenna; the dashed–dotted red line refers to an isotropic medium with n = n e = 1.75 , while the dotted red line refers to an isotropic medium with n = n o = 1.49 ; (b) load impedance: continuous (dashed) line corresponds to the results numerically obtained for the LC director oriented orthogonal (parallel) to the wire antenna; circles and triangles show the capacitive approximation of the gap region.

Fig. 5
Fig. 5

Field enhancement versus frequency: continuous (dashed) line refers to the case with the LC directors oriented orthogonal (parallel) to the wire antenna as computed from full numerical simulation of the problem at hand; circles and squares refer to the values as obtained from the equivalent circuit model.

Fig. 6
Fig. 6

(a) Resonance frequency versus applied electric voltage V; (b) field enhancement versus applied voltage V at f = 265   THz (continuous line) and at f = 271   THz (dashed line).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Z L 1 , 2 = V L 1 , 2 I L 1 , 2 ,
V L 1 , 2 = V oc Z L 1 , 2 ( Z A + Z L 1 , 2 ) ,
Z A = Z L 1 ( 1 V L 1 / V L 2 V L 1 / V L 2 Z L 1 / Z L 2 ) = V L 2 V L 1 I L 1 I L 2 ,
V oc = V L 1 Z A + Z L 1 Z L 1 .
ϵ = ( ϵ 1 , 1 0 ϵ 1 , 3 0 ϵ 0 ϵ 3 , 1 0 ϵ 3 , 3 ) ,
ϵ 1 , 1 = ϵ cos 2 ( θ ) + ϵ sin 2 ( θ ) ,
ϵ 3 , 3 = ϵ cos 2 ( θ ) + ϵ sin 2 ( θ ) ,
ϵ 1 , 3 = ϵ 3 , 1 = ( ϵ ϵ ) cos ( θ ) sin ( θ ) .

Metrics