Abstract

Spectroscopic second-harmonic generation (SHG) and reflectance-anisotropy spectroscopy are used to probe a single-domain reconstructed stepped Si(001) surface off cut 6° toward [110] before and after dissociative adsorption of H2 at the DB step edges. The reflectance-anisotropy spectrum and the first- and third-order Fourier components of the SHG azimuthal anisotropy exhibit broad step-induced resonant peaks near 3.1 eV that are quenched in approximate proportion to H2 dosage, suggesting that they all share a common origin in the essential electronic resonance of the DB steps. Analysis with a simplified bond-hyperpolarizability model suggests that hydrogen termination redistributes oscillator strength from the chemically active nearly vertical step dangling bond into three underlying bonds, suggesting the latter may be related to the third-order Fourier component of the SHG response.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. G. Owen, K. Miki, and D. R. Bowler, “Self-assembled nanowires on semiconductor surfaces,” J. Mater. Sci. 41, 4568–4603 (2006).
    [CrossRef]
  2. J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces,” Nature 437, 671–679 (2005).
    [CrossRef] [PubMed]
  3. G. P. Lopinski, D. D. M. Wayner, and R. A. Wolkow, “Self-directed growth of molecular nanostructures on silicon,” Nature 406, 48–51 (2000).
    [CrossRef] [PubMed]
  4. F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
    [CrossRef]
  5. T. C. Shen, C. Wang, and J. R. Tucker, “Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning,” Phys. Rev. Lett. 78, 1271–1274 (1997).
    [CrossRef]
  6. J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
    [CrossRef]
  7. Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
    [CrossRef]
  8. D. E. Aspnes and A. A. Studna, “Anisotropies in the above band-gap optical-spectra of cubic semiconductors,”Phys. Rev. Lett. 54, 1956–1959 (1985).
    [CrossRef] [PubMed]
  9. P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
    [CrossRef]
  10. D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
    [CrossRef] [PubMed]
  11. R. Shioda and J. van der Weide, “Reflectance difference spectroscopy of highly oriented (2×1) reconstructed Si(001) surfaces,” Phys. Rev. B 57, R6823–R6825 (1998).
    [CrossRef]
  12. S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
    [CrossRef]
  13. Z. Sobiesierski, D. I. Westwood, and C. C. Matthai, “Aspects of reflectance anisotropy spectroscopy from semiconductor surfaces,” J. Phys. Condens. Matter 10, 1–43 (1998).
    [CrossRef]
  14. T. Nakayama and M. Murayama, “Atom-scale optical determination of Si-oxide layer thickness during layer-by-layer oxidation: theoretical study,” Appl. Phys. Lett. 77, 4286–4288 (2000).
    [CrossRef]
  15. W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
    [CrossRef]
  16. W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Terrace and step contributions to the optical anisotropy of Si(001) surfaces,” Phys. Rev. B 63, 045322 (2001).
    [CrossRef]
  17. J. Kwon, M. C. Downer, and B. S. Mendoza, “Second-harmonic and reflectance-anisotropy spectroscopy of vicinal Si(001)/SiO2 interfaces: experiment and simplified microscopic model,” Phys. Rev. B 73, 195330 (2006).
    [CrossRef]
  18. G. Lupke, D. J. Bottomley, and H. M. Vandriel, “Second- and third-harmonic generation from cubic centrosymmetric crystals with vicinal faces: phenomenological theory and experiment,” J. Opt. Soc. Am. B 11, 33–44 (1994).
    [CrossRef]
  19. G. Lupke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 75–161 (1999).
    [CrossRef]
  20. J. Kwon and M. C. Downer, “Reflectance-difference and second-harmonic generation: a meeting of two surface spectroscopies,” Phys. Status Solidi C 0, 3055–3059 (2003).
    [CrossRef]
  21. G. D. Powell, J. F. Wang, and D. E. Aspnes, “Simplified bond-hyperpolarizability model of second harmonic generation,” Phys. Rev. B 65, 205320 (2002).
    [CrossRef]
  22. A. A. Demkov and O. F. Sankey, “Growth study and theoretical investigation of the ultrathin oxide SiO2-Si heterojunction,” Phys. Rev. Lett. 83, 2038–2041 (1999).
    [CrossRef]
  23. D. J. Chadi, “Stabilities of single-layer and bilayer steps on Si(001) surfaces,” Phys. Rev. Lett. 59, 1691–1694 (1987).
    [CrossRef] [PubMed]
  24. R. A. Wolkow, “Direct observation of an increase in buckled dimers on Si(001) at low-temperature,” Phys. Rev. Lett. 68, 2636–2639 (1992).
    [CrossRef] [PubMed]
  25. P. E. Wierenga, J. A. Kubby, and J. E. Griffith, “Tunneling images of biatomic steps on Si(001),” Phys. Rev. Lett. 59, 2169–2172 (1987).
    [CrossRef] [PubMed]
  26. N. Witkowski, R. Coustel, O. Pluchery, and Y. Borensztein, “RAS: an efficient probe to characterize Si(001)-(2×1) surfaces,” Surf. Sci. 600, 5142–5149 (2006).
    [CrossRef]
  27. W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features,” J. Vac. Sci. Technol. B 18, 2215–2223 (2000).
    [CrossRef]
  28. K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect free Si(001) surface,” J. Vac. Sci. Technol. A 18, 1933–1936 (2000).
    [CrossRef]
  29. R. Kaplan, “LEED study of the stepped surface of vicinal Si(100),” Surf. Sci. 93, 145–158 (1980).
    [CrossRef]
  30. L. Mantese, U. Rossow, and D. E. Aspnes, “Surface-induced optical anisotropy of oxidized, clean, and hydrogenated vicinal Si(001) surfaces,” Appl. Surf. Sci. 107, 35–41 (1996).
    [CrossRef]
  31. Y. Borensztein and N. Witkowski, “Optical response of clean and hydrogen-covered vicinal Si(001)-2×1 surfaces,” J. Phys. Condens. Matter 16, S4301–S4311 (2004).
    [CrossRef]
  32. W. Daum, H. J. Krause, U. Reichel, and H. Ibach, “Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy,” Phys. Rev. Lett. 71, 1234–1237 (1993).
    [CrossRef] [PubMed]
  33. M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
    [CrossRef]
  34. W. Ranke, “Precursor kinetics of dissociative water adsorption on the Si(001) surface,” Surf. Sci. 369, 137–145 (1996).
    [CrossRef]
  35. M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
    [CrossRef]
  36. R. J. Hamers and U. K. Köhler, “Determination of the local electronic structure of atomic-sized defects on Si(001) by tunneling spectroscopy,” J. Vac. Sci. Technol. A 7, 2854–2859 (1989).
    [CrossRef]
  37. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  38. G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).
    [CrossRef]
  39. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
    [CrossRef]
  40. G. Kresse and J. Hafner, “Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14269 (1994).
    [CrossRef]
  41. G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for open-shell transition-metals,” Phys. Rev. B 48, 13115–13118 (1993).
    [CrossRef]
  42. G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for liquid-metals,” Phys. Rev. B 47, 558–561 (1993).
    [CrossRef]
  43. G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements,” J. Phys. Condens. Matter 6, 8245–8257 (1994).
    [CrossRef]
  44. J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
    [CrossRef]
  45. Z. Z. Zhu, N. Shima, and M. Tsukada, “Electronic states of Si(100) reconstructed surfaces,” Phys. Rev. B 40, 11868–11879 (1989).
    [CrossRef]
  46. J. Kwon, “Second-harmonic generation and reflectance-anisotropy spectroscopy of vicinal Si(001),” Ph.D. dissertation (University of Texas at Austin, 2006).

2009

M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
[CrossRef]

2006

N. Witkowski, R. Coustel, O. Pluchery, and Y. Borensztein, “RAS: an efficient probe to characterize Si(001)-(2×1) surfaces,” Surf. Sci. 600, 5142–5149 (2006).
[CrossRef]

J. H. G. Owen, K. Miki, and D. R. Bowler, “Self-assembled nanowires on semiconductor surfaces,” J. Mater. Sci. 41, 4568–4603 (2006).
[CrossRef]

J. Kwon, M. C. Downer, and B. S. Mendoza, “Second-harmonic and reflectance-anisotropy spectroscopy of vicinal Si(001)/SiO2 interfaces: experiment and simplified microscopic model,” Phys. Rev. B 73, 195330 (2006).
[CrossRef]

2005

J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces,” Nature 437, 671–679 (2005).
[CrossRef] [PubMed]

2004

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Y. Borensztein and N. Witkowski, “Optical response of clean and hydrogen-covered vicinal Si(001)-2×1 surfaces,” J. Phys. Condens. Matter 16, S4301–S4311 (2004).
[CrossRef]

2003

J. Kwon and M. C. Downer, “Reflectance-difference and second-harmonic generation: a meeting of two surface spectroscopies,” Phys. Status Solidi C 0, 3055–3059 (2003).
[CrossRef]

2002

G. D. Powell, J. F. Wang, and D. E. Aspnes, “Simplified bond-hyperpolarizability model of second harmonic generation,” Phys. Rev. B 65, 205320 (2002).
[CrossRef]

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

2001

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Terrace and step contributions to the optical anisotropy of Si(001) surfaces,” Phys. Rev. B 63, 045322 (2001).
[CrossRef]

2000

T. Nakayama and M. Murayama, “Atom-scale optical determination of Si-oxide layer thickness during layer-by-layer oxidation: theoretical study,” Appl. Phys. Lett. 77, 4286–4288 (2000).
[CrossRef]

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

G. P. Lopinski, D. D. M. Wayner, and R. A. Wolkow, “Self-directed growth of molecular nanostructures on silicon,” Nature 406, 48–51 (2000).
[CrossRef] [PubMed]

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features,” J. Vac. Sci. Technol. B 18, 2215–2223 (2000).
[CrossRef]

K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect free Si(001) surface,” J. Vac. Sci. Technol. A 18, 1933–1936 (2000).
[CrossRef]

1999

A. A. Demkov and O. F. Sankey, “Growth study and theoretical investigation of the ultrathin oxide SiO2-Si heterojunction,” Phys. Rev. Lett. 83, 2038–2041 (1999).
[CrossRef]

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

G. Lupke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 75–161 (1999).
[CrossRef]

1998

P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
[CrossRef]

Z. Sobiesierski, D. I. Westwood, and C. C. Matthai, “Aspects of reflectance anisotropy spectroscopy from semiconductor surfaces,” J. Phys. Condens. Matter 10, 1–43 (1998).
[CrossRef]

R. Shioda and J. van der Weide, “Reflectance difference spectroscopy of highly oriented (2×1) reconstructed Si(001) surfaces,” Phys. Rev. B 57, R6823–R6825 (1998).
[CrossRef]

1997

T. C. Shen, C. Wang, and J. R. Tucker, “Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning,” Phys. Rev. Lett. 78, 1271–1274 (1997).
[CrossRef]

1996

W. Ranke, “Precursor kinetics of dissociative water adsorption on the Si(001) surface,” Surf. Sci. 369, 137–145 (1996).
[CrossRef]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).
[CrossRef]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[CrossRef]

L. Mantese, U. Rossow, and D. E. Aspnes, “Surface-induced optical anisotropy of oxidized, clean, and hydrogenated vicinal Si(001) surfaces,” Appl. Surf. Sci. 107, 35–41 (1996).
[CrossRef]

1995

J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[CrossRef]

1994

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements,” J. Phys. Condens. Matter 6, 8245–8257 (1994).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14269 (1994).
[CrossRef]

G. Lupke, D. J. Bottomley, and H. M. Vandriel, “Second- and third-harmonic generation from cubic centrosymmetric crystals with vicinal faces: phenomenological theory and experiment,” J. Opt. Soc. Am. B 11, 33–44 (1994).
[CrossRef]

1993

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for open-shell transition-metals,” Phys. Rev. B 48, 13115–13118 (1993).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for liquid-metals,” Phys. Rev. B 47, 558–561 (1993).
[CrossRef]

W. Daum, H. J. Krause, U. Reichel, and H. Ibach, “Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy,” Phys. Rev. Lett. 71, 1234–1237 (1993).
[CrossRef] [PubMed]

1992

R. A. Wolkow, “Direct observation of an increase in buckled dimers on Si(001) at low-temperature,” Phys. Rev. Lett. 68, 2636–2639 (1992).
[CrossRef] [PubMed]

1989

R. J. Hamers and U. K. Köhler, “Determination of the local electronic structure of atomic-sized defects on Si(001) by tunneling spectroscopy,” J. Vac. Sci. Technol. A 7, 2854–2859 (1989).
[CrossRef]

Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

Z. Z. Zhu, N. Shima, and M. Tsukada, “Electronic states of Si(100) reconstructed surfaces,” Phys. Rev. B 40, 11868–11879 (1989).
[CrossRef]

1987

P. E. Wierenga, J. A. Kubby, and J. E. Griffith, “Tunneling images of biatomic steps on Si(001),” Phys. Rev. Lett. 59, 2169–2172 (1987).
[CrossRef] [PubMed]

D. J. Chadi, “Stabilities of single-layer and bilayer steps on Si(001) surfaces,” Phys. Rev. Lett. 59, 1691–1694 (1987).
[CrossRef] [PubMed]

1985

D. E. Aspnes and A. A. Studna, “Anisotropies in the above band-gap optical-spectra of cubic semiconductors,”Phys. Rev. Lett. 54, 1956–1959 (1985).
[CrossRef] [PubMed]

1981

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
[CrossRef]

1980

R. Kaplan, “LEED study of the stepped surface of vicinal Si(100),” Surf. Sci. 93, 145–158 (1980).
[CrossRef]

1964

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Abbott, N. L.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Arzate, N.

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

Aspnes, D. E.

G. D. Powell, J. F. Wang, and D. E. Aspnes, “Simplified bond-hyperpolarizability model of second harmonic generation,” Phys. Rev. B 65, 205320 (2002).
[CrossRef]

L. Mantese, U. Rossow, and D. E. Aspnes, “Surface-induced optical anisotropy of oxidized, clean, and hydrogenated vicinal Si(001) surfaces,” Appl. Surf. Sci. 107, 35–41 (1996).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Anisotropies in the above band-gap optical-spectra of cubic semiconductors,”Phys. Rev. Lett. 54, 1956–1959 (1985).
[CrossRef] [PubMed]

Barth, J. V.

J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces,” Nature 437, 671–679 (2005).
[CrossRef] [PubMed]

Bechstedt, F.

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Terrace and step contributions to the optical anisotropy of Si(001) surfaces,” Phys. Rev. B 63, 045322 (2001).
[CrossRef]

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features,” J. Vac. Sci. Technol. B 18, 2215–2223 (2000).
[CrossRef]

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Bernholc, J.

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Terrace and step contributions to the optical anisotropy of Si(001) surfaces,” Phys. Rev. B 63, 045322 (2001).
[CrossRef]

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features,” J. Vac. Sci. Technol. B 18, 2215–2223 (2000).
[CrossRef]

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Borensztein, Y.

M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
[CrossRef]

N. Witkowski, R. Coustel, O. Pluchery, and Y. Borensztein, “RAS: an efficient probe to characterize Si(001)-(2×1) surfaces,” Surf. Sci. 600, 5142–5149 (2006).
[CrossRef]

Y. Borensztein and N. Witkowski, “Optical response of clean and hydrogen-covered vicinal Si(001)-2×1 surfaces,” J. Phys. Condens. Matter 16, S4301–S4311 (2004).
[CrossRef]

Bottomley, D. J.

Bowler, D. R.

J. H. G. Owen, K. Miki, and D. R. Bowler, “Self-assembled nanowires on semiconductor surfaces,” J. Mater. Sci. 41, 4568–4603 (2006).
[CrossRef]

Chadi, D. J.

D. J. Chadi, “Stabilities of single-layer and bilayer steps on Si(001) surfaces,” Phys. Rev. Lett. 59, 1691–1694 (1987).
[CrossRef] [PubMed]

Costantini, G.

J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces,” Nature 437, 671–679 (2005).
[CrossRef] [PubMed]

Coustel, R.

N. Witkowski, R. Coustel, O. Pluchery, and Y. Borensztein, “RAS: an efficient probe to characterize Si(001)-(2×1) surfaces,” Surf. Sci. 600, 5142–5149 (2006).
[CrossRef]

Crain, J. N.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Daum, W.

W. Daum, H. J. Krause, U. Reichel, and H. Ibach, “Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy,” Phys. Rev. Lett. 71, 1234–1237 (1993).
[CrossRef] [PubMed]

Demkov, A. A.

A. A. Demkov and O. F. Sankey, “Growth study and theoretical investigation of the ultrathin oxide SiO2-Si heterojunction,” Phys. Rev. Lett. 83, 2038–2041 (1999).
[CrossRef]

Downer, M. C.

J. Kwon, M. C. Downer, and B. S. Mendoza, “Second-harmonic and reflectance-anisotropy spectroscopy of vicinal Si(001)/SiO2 interfaces: experiment and simplified microscopic model,” Phys. Rev. B 73, 195330 (2006).
[CrossRef]

J. Kwon and M. C. Downer, “Reflectance-difference and second-harmonic generation: a meeting of two surface spectroscopies,” Phys. Status Solidi C 0, 3055–3059 (2003).
[CrossRef]

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

Ekerdt, J. G.

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

Esser, N.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Frisch, A. M.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Furthmuller, J.

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).
[CrossRef]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[CrossRef]

Gavrilenko, V. I.

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

Griffith, J. E.

P. E. Wierenga, J. A. Kubby, and J. E. Griffith, “Tunneling images of biatomic steps on Si(001),” Phys. Rev. Lett. 59, 2169–2172 (1987).
[CrossRef] [PubMed]

Hafner, J.

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements,” J. Phys. Condens. Matter 6, 8245–8257 (1994).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14269 (1994).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for liquid-metals,” Phys. Rev. B 47, 558–561 (1993).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for open-shell transition-metals,” Phys. Rev. B 48, 13115–13118 (1993).
[CrossRef]

Hamers, R. J.

R. J. Hamers and U. K. Köhler, “Determination of the local electronic structure of atomic-sized defects on Si(001) by tunneling spectroscopy,” J. Vac. Sci. Technol. A 7, 2854–2859 (1989).
[CrossRef]

Hannappel, T.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Hata, K.

K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect free Si(001) surface,” J. Vac. Sci. Technol. A 18, 1933–1936 (2000).
[CrossRef]

Himpsel, F. J.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Hofer, U.

P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
[CrossRef]

Ibach, H.

W. Daum, H. J. Krause, U. Reichel, and H. Ibach, “Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy,” Phys. Rev. Lett. 71, 1234–1237 (1993).
[CrossRef] [PubMed]

Jaloviar, S. G.

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

Kamakura, N.

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Kaplan, R.

R. Kaplan, “LEED study of the stepped surface of vicinal Si(100),” Surf. Sci. 93, 145–158 (1980).
[CrossRef]

Kern, K.

J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces,” Nature 437, 671–679 (2005).
[CrossRef] [PubMed]

Kimura, T.

K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect free Si(001) surface,” J. Vac. Sci. Technol. A 18, 1933–1936 (2000).
[CrossRef]

Kimura, Y.

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Kirakosian, A.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Köhler, U. K.

R. J. Hamers and U. K. Köhler, “Determination of the local electronic structure of atomic-sized defects on Si(001) by tunneling spectroscopy,” J. Vac. Sci. Technol. A 7, 2854–2859 (1989).
[CrossRef]

Kratzer, P.

P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
[CrossRef]

Krause, H. J.

W. Daum, H. J. Krause, U. Reichel, and H. Ibach, “Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy,” Phys. Rev. Lett. 71, 1234–1237 (1993).
[CrossRef] [PubMed]

Kresse, G.

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[CrossRef]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14269 (1994).
[CrossRef]

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements,” J. Phys. Condens. Matter 6, 8245–8257 (1994).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for liquid-metals,” Phys. Rev. B 47, 558–561 (1993).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for open-shell transition-metals,” Phys. Rev. B 48, 13115–13118 (1993).
[CrossRef]

Kubby, J. A.

P. E. Wierenga, J. A. Kubby, and J. E. Griffith, “Tunneling images of biatomic steps on Si(001),” Phys. Rev. Lett. 59, 2169–2172 (1987).
[CrossRef] [PubMed]

Kwon, J.

J. Kwon, M. C. Downer, and B. S. Mendoza, “Second-harmonic and reflectance-anisotropy spectroscopy of vicinal Si(001)/SiO2 interfaces: experiment and simplified microscopic model,” Phys. Rev. B 73, 195330 (2006).
[CrossRef]

J. Kwon and M. C. Downer, “Reflectance-difference and second-harmonic generation: a meeting of two surface spectroscopies,” Phys. Status Solidi C 0, 3055–3059 (2003).
[CrossRef]

J. Kwon, “Second-harmonic generation and reflectance-anisotropy spectroscopy of vicinal Si(001),” Ph.D. dissertation (University of Texas at Austin, 2006).

Lagally, M. G.

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

Lim, D.

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

Lin, J. L.

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

Liu, F.

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

Lopinski, G. P.

G. P. Lopinski, D. D. M. Wayner, and R. A. Wolkow, “Self-directed growth of molecular nanostructures on silicon,” Nature 406, 48–51 (2000).
[CrossRef] [PubMed]

Luk, Y. Y.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Lupke, G.

Mantese, L.

L. Mantese, U. Rossow, and D. E. Aspnes, “Surface-induced optical anisotropy of oxidized, clean, and hydrogenated vicinal Si(001) surfaces,” Appl. Surf. Sci. 107, 35–41 (1996).
[CrossRef]

Matthai, C. C.

Z. Sobiesierski, D. I. Westwood, and C. C. Matthai, “Aspects of reflectance anisotropy spectroscopy from semiconductor surfaces,” J. Phys. Condens. Matter 10, 1–43 (1998).
[CrossRef]

McCaughan, L.

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

McChesney, J. L.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

McGilp, J. F.

J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[CrossRef]

Mendoza, B. S.

J. Kwon, M. C. Downer, and B. S. Mendoza, “Second-harmonic and reflectance-anisotropy spectroscopy of vicinal Si(001)/SiO2 interfaces: experiment and simplified microscopic model,” Phys. Rev. B 73, 195330 (2006).
[CrossRef]

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

Miki, K.

J. H. G. Owen, K. Miki, and D. R. Bowler, “Self-assembled nanowires on semiconductor surfaces,” J. Mater. Sci. 41, 4568–4603 (2006).
[CrossRef]

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Murayama, M.

T. Nakayama and M. Murayama, “Atom-scale optical determination of Si-oxide layer thickness during layer-by-layer oxidation: theoretical study,” Appl. Phys. Lett. 77, 4286–4288 (2000).
[CrossRef]

Nakayama, T.

T. Nakayama and M. Murayama, “Atom-scale optical determination of Si-oxide layer thickness during layer-by-layer oxidation: theoretical study,” Appl. Phys. Lett. 77, 4286–4288 (2000).
[CrossRef]

Nealey, P. F.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Nishizawa, M.

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Niwano, M.

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Owen, J. H. G.

J. H. G. Owen, K. Miki, and D. R. Bowler, “Self-assembled nanowires on semiconductor surfaces,” J. Mater. Sci. 41, 4568–4603 (2006).
[CrossRef]

Ozawa, S.

K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect free Si(001) surface,” J. Vac. Sci. Technol. A 18, 1933–1936 (2000).
[CrossRef]

Palummo, M.

M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
[CrossRef]

Pehlke, E.

P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
[CrossRef]

Perdew, J. P.

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
[CrossRef]

Perez-Dieste, V.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Petrovykh, D. Y.

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

Pluchery, O.

M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
[CrossRef]

N. Witkowski, R. Coustel, O. Pluchery, and Y. Borensztein, “RAS: an efficient probe to characterize Si(001)-(2×1) surfaces,” Surf. Sci. 600, 5142–5149 (2006).
[CrossRef]

Powell, G. D.

G. D. Powell, J. F. Wang, and D. E. Aspnes, “Simplified bond-hyperpolarizability model of second harmonic generation,” Phys. Rev. B 65, 205320 (2002).
[CrossRef]

Ranke, W.

W. Ranke, “Precursor kinetics of dissociative water adsorption on the Si(001) surface,” Surf. Sci. 369, 137–145 (1996).
[CrossRef]

Raschke, M. B.

P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
[CrossRef]

Reichel, U.

W. Daum, H. J. Krause, U. Reichel, and H. Ibach, “Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy,” Phys. Rev. Lett. 71, 1234–1237 (1993).
[CrossRef] [PubMed]

Richter, W.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Rossow, U.

L. Mantese, U. Rossow, and D. E. Aspnes, “Surface-induced optical anisotropy of oxidized, clean, and hydrogenated vicinal Si(001) surfaces,” Appl. Surf. Sci. 107, 35–41 (1996).
[CrossRef]

Sankey, O. F.

A. A. Demkov and O. F. Sankey, “Growth study and theoretical investigation of the ultrathin oxide SiO2-Si heterojunction,” Phys. Rev. Lett. 83, 2038–2041 (1999).
[CrossRef]

Scheffler, M.

P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
[CrossRef]

Schmidt, W. G.

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Terrace and step contributions to the optical anisotropy of Si(001) surfaces,” Phys. Rev. B 63, 045322 (2001).
[CrossRef]

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features,” J. Vac. Sci. Technol. B 18, 2215–2223 (2000).
[CrossRef]

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Shen, T. C.

T. C. Shen, C. Wang, and J. R. Tucker, “Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning,” Phys. Rev. Lett. 78, 1271–1274 (1997).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

Shigekawa, H.

K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect free Si(001) surface,” J. Vac. Sci. Technol. A 18, 1933–1936 (2000).
[CrossRef]

Shima, N.

Z. Z. Zhu, N. Shima, and M. Tsukada, “Electronic states of Si(100) reconstructed surfaces,” Phys. Rev. B 40, 11868–11879 (1989).
[CrossRef]

Shinohara, M.

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Shioda, R.

R. Shioda and J. van der Weide, “Reflectance difference spectroscopy of highly oriented (2×1) reconstructed Si(001) surfaces,” Phys. Rev. B 57, R6823–R6825 (1998).
[CrossRef]

Sobiesierski, Z.

Z. Sobiesierski, D. I. Westwood, and C. C. Matthai, “Aspects of reflectance anisotropy spectroscopy from semiconductor surfaces,” J. Phys. Condens. Matter 10, 1–43 (1998).
[CrossRef]

Sole, R. D.

M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Anisotropies in the above band-gap optical-spectra of cubic semiconductors,”Phys. Rev. Lett. 54, 1956–1959 (1985).
[CrossRef] [PubMed]

Tsukada, M.

Z. Z. Zhu, N. Shima, and M. Tsukada, “Electronic states of Si(100) reconstructed surfaces,” Phys. Rev. B 40, 11868–11879 (1989).
[CrossRef]

Tucker, J. R.

T. C. Shen, C. Wang, and J. R. Tucker, “Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning,” Phys. Rev. Lett. 78, 1271–1274 (1997).
[CrossRef]

van der Weide, J.

R. Shioda and J. van der Weide, “Reflectance difference spectroscopy of highly oriented (2×1) reconstructed Si(001) surfaces,” Phys. Rev. B 57, R6823–R6825 (1998).
[CrossRef]

Vandriel, H. M.

Visbeck, S.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Vogt, P.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Wang, C.

T. C. Shen, C. Wang, and J. R. Tucker, “Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning,” Phys. Rev. Lett. 78, 1271–1274 (1997).
[CrossRef]

Wang, J. F.

G. D. Powell, J. F. Wang, and D. E. Aspnes, “Simplified bond-hyperpolarizability model of second harmonic generation,” Phys. Rev. B 65, 205320 (2002).
[CrossRef]

Wayner, D. D. M.

G. P. Lopinski, D. D. M. Wayner, and R. A. Wolkow, “Self-directed growth of molecular nanostructures on silicon,” Nature 406, 48–51 (2000).
[CrossRef] [PubMed]

Westwood, D. I.

Z. Sobiesierski, D. I. Westwood, and C. C. Matthai, “Aspects of reflectance anisotropy spectroscopy from semiconductor surfaces,” J. Phys. Condens. Matter 10, 1–43 (1998).
[CrossRef]

Wierenga, P. E.

P. E. Wierenga, J. A. Kubby, and J. E. Griffith, “Tunneling images of biatomic steps on Si(001),” Phys. Rev. Lett. 59, 2169–2172 (1987).
[CrossRef] [PubMed]

Willig, F.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Witkowski, N.

M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
[CrossRef]

N. Witkowski, R. Coustel, O. Pluchery, and Y. Borensztein, “RAS: an efficient probe to characterize Si(001)-(2×1) surfaces,” Surf. Sci. 600, 5142–5149 (2006).
[CrossRef]

Y. Borensztein and N. Witkowski, “Optical response of clean and hydrogen-covered vicinal Si(001)-2×1 surfaces,” J. Phys. Condens. Matter 16, S4301–S4311 (2004).
[CrossRef]

Wolkow, R. A.

G. P. Lopinski, D. D. M. Wayner, and R. A. Wolkow, “Self-directed growth of molecular nanostructures on silicon,” Nature 406, 48–51 (2000).
[CrossRef] [PubMed]

R. A. Wolkow, “Direct observation of an increase in buckled dimers on Si(001) at low-temperature,” Phys. Rev. Lett. 68, 2636–2639 (1992).
[CrossRef] [PubMed]

Wu, R. Q.

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

Yamasaki, S.

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Yasuda, T.

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

Zhu, Z. Z.

Z. Z. Zhu, N. Shima, and M. Tsukada, “Electronic states of Si(100) reconstructed surfaces,” Phys. Rev. B 40, 11868–11879 (1989).
[CrossRef]

Zielasek, V.

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

Zorn, M.

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

Zunger, A.

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
[CrossRef]

Appl. Phys. Lett.

T. Nakayama and M. Murayama, “Atom-scale optical determination of Si-oxide layer thickness during layer-by-layer oxidation: theoretical study,” Appl. Phys. Lett. 77, 4286–4288 (2000).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Appl. Surf. Sci.

L. Mantese, U. Rossow, and D. E. Aspnes, “Surface-induced optical anisotropy of oxidized, clean, and hydrogenated vicinal Si(001) surfaces,” Appl. Surf. Sci. 107, 35–41 (1996).
[CrossRef]

Comput. Mater. Sci.

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).
[CrossRef]

J. Mater. Sci.

J. H. G. Owen, K. Miki, and D. R. Bowler, “Self-assembled nanowires on semiconductor surfaces,” J. Mater. Sci. 41, 4568–4603 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

F. J. Himpsel, J. L. McChesney, J. N. Crain, A. Kirakosian, V. Perez-Dieste, N. L. Abbott, Y. Y. Luk, P. F. Nealey, and D. Y. Petrovykh, “Stepped silicon surfaces as templates for one-dimensional nanostructures,” J. Phys. Chem. B 108, 14484–14490 (2004).
[CrossRef]

J. Phys. Condens. Matter

Z. Sobiesierski, D. I. Westwood, and C. C. Matthai, “Aspects of reflectance anisotropy spectroscopy from semiconductor surfaces,” J. Phys. Condens. Matter 10, 1–43 (1998).
[CrossRef]

Y. Borensztein and N. Witkowski, “Optical response of clean and hydrogen-covered vicinal Si(001)-2×1 surfaces,” J. Phys. Condens. Matter 16, S4301–S4311 (2004).
[CrossRef]

G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements,” J. Phys. Condens. Matter 6, 8245–8257 (1994).
[CrossRef]

J. Vac. Sci. Technol. A

R. J. Hamers and U. K. Köhler, “Determination of the local electronic structure of atomic-sized defects on Si(001) by tunneling spectroscopy,” J. Vac. Sci. Technol. A 7, 2854–2859 (1989).
[CrossRef]

K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect free Si(001) surface,” J. Vac. Sci. Technol. A 18, 1933–1936 (2000).
[CrossRef]

J. Vac. Sci. Technol. B

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features,” J. Vac. Sci. Technol. B 18, 2215–2223 (2000).
[CrossRef]

Nature

J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces,” Nature 437, 671–679 (2005).
[CrossRef] [PubMed]

G. P. Lopinski, D. D. M. Wayner, and R. A. Wolkow, “Self-directed growth of molecular nanostructures on silicon,” Nature 406, 48–51 (2000).
[CrossRef] [PubMed]

Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

Phys. Rev. B

R. Shioda and J. van der Weide, “Reflectance difference spectroscopy of highly oriented (2×1) reconstructed Si(001) surfaces,” Phys. Rev. B 57, R6823–R6825 (1998).
[CrossRef]

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, “Understanding reflectance anisotropy: surface-state signatures and bulk-related features in the optical spectrum of InP(001)(2×4),” Phys. Rev. B 61, R16335 (2000).
[CrossRef]

W. G. Schmidt, F. Bechstedt, and J. Bernholc, “Terrace and step contributions to the optical anisotropy of Si(001) surfaces,” Phys. Rev. B 63, 045322 (2001).
[CrossRef]

J. Kwon, M. C. Downer, and B. S. Mendoza, “Second-harmonic and reflectance-anisotropy spectroscopy of vicinal Si(001)/SiO2 interfaces: experiment and simplified microscopic model,” Phys. Rev. B 73, 195330 (2006).
[CrossRef]

M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type-C defects on the Si(100)-(2×1) surface,” Phys. Rev. B 65, 161302 (2002).
[CrossRef]

M. Palummo, N. Witkowski, O. Pluchery, R. D. Sole, and Y. Borensztein, “Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: combined experimental and theoretical study,” Phys. Rev. B 79, 035327 (2009).
[CrossRef]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14269 (1994).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for open-shell transition-metals,” Phys. Rev. B 48, 13115–13118 (1993).
[CrossRef]

G. Kresse and J. Hafner, “Ab-initio molecular-dynamics for liquid-metals,” Phys. Rev. B 47, 558–561 (1993).
[CrossRef]

G. D. Powell, J. F. Wang, and D. E. Aspnes, “Simplified bond-hyperpolarizability model of second harmonic generation,” Phys. Rev. B 65, 205320 (2002).
[CrossRef]

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
[CrossRef]

Z. Z. Zhu, N. Shima, and M. Tsukada, “Electronic states of Si(100) reconstructed surfaces,” Phys. Rev. B 40, 11868–11879 (1989).
[CrossRef]

Phys. Rev. Lett.

A. A. Demkov and O. F. Sankey, “Growth study and theoretical investigation of the ultrathin oxide SiO2-Si heterojunction,” Phys. Rev. Lett. 83, 2038–2041 (1999).
[CrossRef]

D. J. Chadi, “Stabilities of single-layer and bilayer steps on Si(001) surfaces,” Phys. Rev. Lett. 59, 1691–1694 (1987).
[CrossRef] [PubMed]

R. A. Wolkow, “Direct observation of an increase in buckled dimers on Si(001) at low-temperature,” Phys. Rev. Lett. 68, 2636–2639 (1992).
[CrossRef] [PubMed]

P. E. Wierenga, J. A. Kubby, and J. E. Griffith, “Tunneling images of biatomic steps on Si(001),” Phys. Rev. Lett. 59, 2169–2172 (1987).
[CrossRef] [PubMed]

W. Daum, H. J. Krause, U. Reichel, and H. Ibach, “Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy,” Phys. Rev. Lett. 71, 1234–1237 (1993).
[CrossRef] [PubMed]

S. G. Jaloviar, J. L. Lin, F. Liu, V. Zielasek, L. McCaughan, and M. G. Lagally, “Step-induced optical anisotropy of vicinal Si(001),” Phys. Rev. Lett. 82, 791–794 (1999).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Anisotropies in the above band-gap optical-spectra of cubic semiconductors,”Phys. Rev. Lett. 54, 1956–1959 (1985).
[CrossRef] [PubMed]

P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Hofer, “Highly site-specific H2 adsorption on vicinal Si(001) surfaces,” Phys. Rev. Lett. 81, 5596–5599 (1998).
[CrossRef]

D. Lim, M. C. Downer, J. G. Ekerdt, N. Arzate, B. S. Mendoza, V. I. Gavrilenko, and R. Q. Wu, “Optical second harmonic spectroscopy of boron-reconstructed Si(001),” Phys. Rev. Lett. 84, 3406–3409 (2000).
[CrossRef] [PubMed]

T. C. Shen, C. Wang, and J. R. Tucker, “Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning,” Phys. Rev. Lett. 78, 1271–1274 (1997).
[CrossRef]

Phys. Status Solidi C

J. Kwon and M. C. Downer, “Reflectance-difference and second-harmonic generation: a meeting of two surface spectroscopies,” Phys. Status Solidi C 0, 3055–3059 (2003).
[CrossRef]

Prog. Surf. Sci.

J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[CrossRef]

Surf. Sci.

R. Kaplan, “LEED study of the stepped surface of vicinal Si(100),” Surf. Sci. 93, 145–158 (1980).
[CrossRef]

N. Witkowski, R. Coustel, O. Pluchery, and Y. Borensztein, “RAS: an efficient probe to characterize Si(001)-(2×1) surfaces,” Surf. Sci. 600, 5142–5149 (2006).
[CrossRef]

W. Ranke, “Precursor kinetics of dissociative water adsorption on the Si(001) surface,” Surf. Sci. 369, 137–145 (1996).
[CrossRef]

Surf. Sci. Rep.

G. Lupke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 75–161 (1999).
[CrossRef]

Other

J. Kwon, “Second-harmonic generation and reflectance-anisotropy spectroscopy of vicinal Si(001),” Ph.D. dissertation (University of Texas at Austin, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

LEED pattern from clean Si(001):6° surface using 60 eV electrons.

Fig. 2
Fig. 2

Experimental RAS data for clean reconstructed vicinal Si(001):6° surface (black squares) and after exposure to molecular hydrogen (blue circles). Inset: Reproduced RAS (solid curves) within spectral range bounded by two vertical lines in the main panel, which correspond to our SH spectral range. Both reproduced RAS spectra were multiplied by the same overall scale factor.

Fig. 3
Fig. 3

Measured SHG (p-in/p-out) intensity versus azimuthal angle ϕ for clean reconstructed vicinal Si(001):6° (open circles) and after exposure to molecular hydrogen (open squares) for 16 different incident wavelengths. Vertical scales are internally consistent for the different wavelengths. Solid curves result from Fourier analysis using complex isotropic Fourier coefficient a 0 and purely real Fourier coefficients a 1 a 4 .

Fig. 4
Fig. 4

RA spectra taken immediately after flashing the vicinal Si(001):6° sample (open triangles), after 3 (open squares) and 6 (open stars) h in UHV and after performing AES (open circles).

Fig. 5
Fig. 5

Rotationally anisotropic SHG of vicinal Si(001):6° at 840 nm fundamental wavelength immediately after flashing (filled squares), after 3 (open squares) and 6 (open circles) h in UHV, and after performing AES (squares with crosses).

Fig. 6
Fig. 6

Spectra of the various Fourier coefficients from fitting SHG data in Fig. 3 for the clean surface (filled squares) and after exposure to molecular hydrogen (open squares).

Fig. 7
Fig. 7

Schematic terrace and step-edge structure showing bond-hyperpolarizability assignments β used in SBHM analysis. The smallest filled gray circles represent second-layer Si atoms. Larger circles represent up- (large filled) and down- (smaller open) buckled Si dimer atoms. Charge-rich d.b.’s extend approximately vertically upward from the up-buckled Si dimer atoms, and thus are also represented by the large filled circles. The dashed circle highlights the quasi-tetrahedral step-edge geometric unit possessing onefold and threefold azimuthal anisotropies that appear primarily responsible for the a 1 , 3 ( ω ) Fourier components of the SHG response.

Fig. 8
Fig. 8

SHG data as in Fig. 3, but now showing fits (solid curves) based on the SBHM.

Fig. 9
Fig. 9

Spectra of fitted hyperpolarizabilities of (a)–(e) step and (f)–(h) terrace bonds of clean reconstructed (filled squares) and hydrogen exposed (open squares) vicinal Si surface off cut at 6°. The hyperpolarizability of the step back bond was assumed to be zero on the clean surface.

Tables (1)

Tables Icon

Table 1 Bond Lengths, Polar and Azimuthal Angles of Bonds on the Clean (H-Adsorbed) Step Edge and Terrace as Determined by Ab Initio Structure Calculation. Polar Angle is Zero along [001]; Azimuthal Angle is Zero along [110] (Perpendicular to Step Edges) as for RA SHG Scans.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E p , p ( 2 ω ) = j = 0 4 a j p , p ( ω ) cos ( n ϕ ) ,
E p , p ( 2 ω ) = k 2 e i k r r ( I ̂ k ̂ k ̂ ) j ( β 2 j b ̂ j b ̂ j b ̂ j ) E E ,

Metrics