Abstract

We demonstrate the use of photoinduced fluidity in low-loss chalcogenide fibers for producing tapers with fine control of the diameter and geometry. The tapers produced this way act as sensing zones along chalcogenide glass fibers used for evanescent wave spectroscopy. The optical microfabrication method consists in irradiating the chalcogenide fiber with sub-bandgap laser light under a tensile stress. The resulting athermal photoinduced fluidity permits to produce tapers with good control over the geometry without altering the optical properties of the fiber. Gains in detection sensitivity greater than 1 order of magnitude are measured using these tapers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, “Advances in chalcogenide fiber evanescent-wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
    [CrossRef]
  2. B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75, 258A–267A (2003).
    [CrossRef] [PubMed]
  3. Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62, 55A–72A (2008).
    [CrossRef] [PubMed]
  4. J. S. Sanghera, F. H. Kung, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
    [CrossRef] [PubMed]
  5. H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J. M. Bayona, and B. Mizaikoff, “In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system,” Appl. Spectrosc. 57, 607–613 (2003).
    [CrossRef] [PubMed]
  6. J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
    [CrossRef]
  7. O. Eytan, B.-A. Sela, and A. Katzir, “Fiber-optic evanescent-wave spectroscopy and neural network: application to chemical blood analysis,” Appl. Opt. 39, 3357–3360 (2000).
    [CrossRef]
  8. J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
    [CrossRef]
  9. P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy (FEWS),” Appl. Spectrosc. 59, 1–9 (2005).
    [CrossRef] [PubMed]
  10. A. Messica, A. Greenstein, and A. Katzir, “Theory of fiber-optic, evanescent-wave spectroscopy and sensors,” Appl. Opt. 35, 2274–2284 (1996).
    [CrossRef] [PubMed]
  11. D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
    [CrossRef]
  12. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007).
    [CrossRef] [PubMed]
  13. A. V. Kolobov and K. Tanaka, in Handbook of Advanced Electronic and Photonic Materials and Devices, H.S.Nalwa, ed. (Academic, 2001), p. 47.
    [CrossRef]
  14. A.V.Kolobov, ed., Photo-Induced Metastability in Amorphous Semiconductors (Wiley-VCH, 2003).
    [CrossRef]
  15. H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
    [CrossRef]
  16. K. Tanaka, “Photoinduced fluidity in chalcogenide glasses,” C. R. Chim. 5, 805–811 (2002).
    [CrossRef]
  17. L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge–As–Se network glasses,” Phys. Rev. Lett. 101, 177402 (2008).
    [CrossRef] [PubMed]
  18. J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
    [CrossRef]
  19. Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
    [CrossRef]
  20. F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
    [CrossRef]
  21. C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
    [CrossRef]
  22. P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge–Se glass,” Phys. Rev. B 71, 104207 (2005).
    [CrossRef]
  23. P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332, 35–42 (2003).
    [CrossRef]
  24. P. Lucas, E. A. King, and A. Doraiswamy, “Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 776–779 (2006).
  25. P. Lucas and E. A. King, “Calorimetric characterization of photo-induced relaxation in GeSe9 glass,” J. Appl. Phys. 100, 023502 (2006).
    [CrossRef]
  26. K. Tanaka, “Reversible photostructural changes: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35-36, 1023–1034 (1980).
    [CrossRef]
  27. M. Katz, A. Katzir, I. Schnitzer, and A. Bornstein, “Quantitative evaluation of chalcogenide glass fiber evanescent wave spectroscopy,” Appl. Opt. 33, 5888–5894 (1994).
    [CrossRef] [PubMed]
  28. S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
    [CrossRef]
  29. K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
    [CrossRef]
  30. S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
    [CrossRef] [PubMed]
  31. M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Phys. Rev. Lett. 37, 1504–1507 (1976).
    [CrossRef]
  32. K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
    [CrossRef]

2009 (3)

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

2008 (2)

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge–As–Se network glasses,” Phys. Rev. Lett. 101, 177402 (2008).
[CrossRef] [PubMed]

Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62, 55A–72A (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

P. Lucas, E. A. King, and A. Doraiswamy, “Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 776–779 (2006).

P. Lucas and E. A. King, “Calorimetric characterization of photo-induced relaxation in GeSe9 glass,” J. Appl. Phys. 100, 023502 (2006).
[CrossRef]

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, “Advances in chalcogenide fiber evanescent-wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[CrossRef]

2005 (2)

2004 (2)

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

2003 (4)

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332, 35–42 (2003).
[CrossRef]

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75, 258A–267A (2003).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J. M. Bayona, and B. Mizaikoff, “In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system,” Appl. Spectrosc. 57, 607–613 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Tanaka, “Photoinduced fluidity in chalcogenide glasses,” C. R. Chim. 5, 805–811 (2002).
[CrossRef]

2001 (2)

S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[CrossRef]

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

2000 (2)

O. Eytan, B.-A. Sela, and A. Katzir, “Fiber-optic evanescent-wave spectroscopy and neural network: application to chemical blood analysis,” Appl. Opt. 39, 3357–3360 (2000).
[CrossRef]

C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
[CrossRef]

1996 (1)

1995 (2)

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
[CrossRef]

1994 (2)

1980 (1)

K. Tanaka, “Reversible photostructural changes: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35-36, 1023–1034 (1980).
[CrossRef]

1976 (1)

M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Phys. Rev. Lett. 37, 1504–1507 (1976).
[CrossRef]

1975 (1)

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
[CrossRef]

Abdelouas, A.

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

Adam, J. L.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Adam, J. -L.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

Adama, J. L.

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

Adler, D.

M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Phys. Rev. Lett. 37, 1504–1507 (1976).
[CrossRef]

Aggarwal, I. D.

J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
[CrossRef]

J. S. Sanghera, F. H. Kung, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
[CrossRef] [PubMed]

Allabashi, R.

Baumann, T.

Baumannc, T.

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

Bayona, J. M.

Boesewetter, D. E.

Bornstein, A.

Boussard-Pledel, C.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, “Advances in chalcogenide fiber evanescent-wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[CrossRef]

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J. M. Bayona, and B. Mizaikoff, “In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system,” Appl. Spectrosc. 57, 607–613 (2003).
[CrossRef] [PubMed]

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[CrossRef]

Boussard-Plédel, C.

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy (FEWS),” Appl. Spectrosc. 59, 1–9 (2005).
[CrossRef] [PubMed]

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

Brandenburg, A.

Brilland, L.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Bureau, B.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, “Advances in chalcogenide fiber evanescent-wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[CrossRef]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy (FEWS),” Appl. Spectrosc. 59, 1–9 (2005).
[CrossRef] [PubMed]

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J. M. Bayona, and B. Mizaikoff, “In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system,” Appl. Spectrosc. 57, 607–613 (2003).
[CrossRef] [PubMed]

Busse, L. E.

J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
[CrossRef]

Calvez, L.

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge–As–Se network glasses,” Phys. Rev. Lett. 101, 177402 (2008).
[CrossRef] [PubMed]

Charpentier, F.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Churbanov, M.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Collier, J.

Desevedavy, F.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Doraiswamy, A.

P. Lucas, E. A. King, and A. Doraiswamy, “Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 776–779 (2006).

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge–Se glass,” Phys. Rev. B 71, 104207 (2005).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332, 35–42 (2003).
[CrossRef]

Eggleton, B. J.

Eytan, O.

Fleischmann, N.

Fonteneau, G.

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[CrossRef]

Fritzsche, H.

M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Phys. Rev. Lett. 37, 1504–1507 (1976).
[CrossRef]

Fu, L. B.

Greenstein, A.

Guin, J. -P.

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

Hisakuni, H.

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

Hocde, S.

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[CrossRef]

Houizot, P.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Jakusch, M.

Jivaganont, P.

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge–Se glass,” Phys. Rev. B 71, 104207 (2005).
[CrossRef]

Jouan, T.

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

Juncker, C.

Karlowatz, M.

Kastner, M.

M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Phys. Rev. Lett. 37, 1504–1507 (1976).
[CrossRef]

Katz, M.

Katzir, A.

Keirsse, J.

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

King, E. A.

P. Lucas and E. A. King, “Calorimetric characterization of photo-induced relaxation in GeSe9 glass,” J. Appl. Phys. 100, 023502 (2006).
[CrossRef]

P. Lucas, E. A. King, and A. Doraiswamy, “Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 776–779 (2006).

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge–Se glass,” Phys. Rev. B 71, 104207 (2005).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332, 35–42 (2003).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov and K. Tanaka, in Handbook of Advanced Electronic and Photonic Materials and Devices, H.S.Nalwa, ed. (Academic, 2001), p. 47.
[CrossRef]

Konz, W.

Kraft, M.

Kung, F. H.

J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
[CrossRef]

J. S. Sanghera, F. H. Kung, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
[CrossRef] [PubMed]

Lamont, M. R. E.

Le Coq, D.

Le Neindre, L.

C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
[CrossRef]

Lecoq, D.

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

Leroyer, P.

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

Loreal, O.

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

Lucas, J.

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J. M. Bayona, and B. Mizaikoff, “In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system,” Appl. Spectrosc. 57, 607–613 (2003).
[CrossRef] [PubMed]

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[CrossRef]

C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
[CrossRef]

Lucas, P.

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge–As–Se network glasses,” Phys. Rev. Lett. 101, 177402 (2008).
[CrossRef] [PubMed]

P. Lucas, E. A. King, and A. Doraiswamy, “Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 776–779 (2006).

P. Lucas and E. A. King, “Calorimetric characterization of photo-induced relaxation in GeSe9 glass,” J. Appl. Phys. 100, 023502 (2006).
[CrossRef]

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, “Advances in chalcogenide fiber evanescent-wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[CrossRef]

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge–Se glass,” Phys. Rev. B 71, 104207 (2005).
[CrossRef]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy (FEWS),” Appl. Spectrosc. 59, 1–9 (2005).
[CrossRef] [PubMed]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332, 35–42 (2003).
[CrossRef]

C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
[CrossRef]

Mägi, E. C.

Messica, A.

Michel, K.

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J. M. Bayona, and B. Mizaikoff, “In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system,” Appl. Spectrosc. 57, 607–613 (2003).
[CrossRef] [PubMed]

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

Michel-Le Pierres, K.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

Miklos, R. E.

Mizaikoff, B.

Nguyen, H. C.

Nguyen, V. Q.

Niessner, R.

Niu, Y. -F.

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

Pain, T.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Pureza, P. C.

J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
[CrossRef]

Raichlin, Y.

Reichlin, Y.

Riley, M. R.

Rouxel, T.

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

Sangehra, J. S.

J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
[CrossRef]

Sanghera, J. S.

Schardt, C. R.

C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
[CrossRef]

Schnitzer, I.

Sela, B. -A.

Shiryaev, V.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Simmons, J. H.

C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
[CrossRef]

Sire, O.

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

Smektala, F.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

Snopatin, G.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Staubmann, K.

Steiner, H.

Tanaka, K.

K. Tanaka, “Photoinduced fluidity in chalcogenide glasses,” C. R. Chim. 5, 805–811 (2002).
[CrossRef]

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

K. Tanaka, “Reversible photostructural changes: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35-36, 1023–1034 (1980).
[CrossRef]

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
[CrossRef]

A. V. Kolobov and K. Tanaka, in Handbook of Advanced Electronic and Photonic Materials and Devices, H.S.Nalwa, ed. (Academic, 2001), p. 47.
[CrossRef]

Troles, J.

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

Turlin, B.

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

Yang, Z.

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge–As–Se network glasses,” Phys. Rev. Lett. 101, 177402 (2008).
[CrossRef] [PubMed]

Yeom, D. I.

Anal. Biochem. (1)

P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, “Advances in chalcogenide fiber evanescent-wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[CrossRef]

Anal. Chem. (1)

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75, 258A–267A (2003).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
[CrossRef]

Appl. Spectrosc. (3)

C. R. Chim. (1)

K. Tanaka, “Photoinduced fluidity in chalcogenide glasses,” C. R. Chim. 5, 805–811 (2002).
[CrossRef]

Int. J. Inorg. Mater. (1)

D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001).
[CrossRef]

J. Am. Ceram. Soc. (2)

J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995).
[CrossRef]

Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009).
[CrossRef]

J. Appl. Phys. (1)

P. Lucas and E. A. King, “Calorimetric characterization of photo-induced relaxation in GeSe9 glass,” J. Appl. Phys. 100, 023502 (2006).
[CrossRef]

J. Biomed. Opt. (1)

S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[CrossRef] [PubMed]

J. Non-Cryst. Sol. (1)

J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003).
[CrossRef]

J. Non-Cryst. Solids (3)

K. Tanaka, “Reversible photostructural changes: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35-36, 1023–1034 (1980).
[CrossRef]

C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332, 35–42 (2003).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

P. Lucas, E. A. King, and A. Doraiswamy, “Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 776–779 (2006).

Opt. Express (1)

Opt. Mater. (2)

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009).
[CrossRef]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009).
[CrossRef]

Phys. Rev. B (1)

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge–Se glass,” Phys. Rev. B 71, 104207 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Phys. Rev. Lett. 37, 1504–1507 (1976).
[CrossRef]

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge–As–Se network glasses,” Phys. Rev. Lett. 101, 177402 (2008).
[CrossRef] [PubMed]

Science (1)

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

Sens. Actuators B (1)

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004).
[CrossRef]

Solid State Sci. (1)

S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[CrossRef]

Other (2)

A. V. Kolobov and K. Tanaka, in Handbook of Advanced Electronic and Photonic Materials and Devices, H.S.Nalwa, ed. (Academic, 2001), p. 47.
[CrossRef]

A.V.Kolobov, ed., Photo-Induced Metastability in Amorphous Semiconductors (Wiley-VCH, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematics of the experimental setup for photoinduced tapering. A tensile load is applied on the fiber during irradiation with an elongated beam of sub-bandgap laser light.

Fig. 2
Fig. 2

Attenuation curve of a GeSe 4 fiber purified by subsequent sublimation and distillation. The attenuation curve was measured using the cut-back method.

Fig. 3
Fig. 3

Transmission curve of a GeSe 9 glass disk along the band-edge. Three different irradiation wavelengths in the band tail are indicated at 780, 785, and 790 nm.

Fig. 4
Fig. 4

Elongation versus time of a GeSe 9 fiber under a constant tensile load during irradiation with different wavelengths at an intensity of 14   W / cm 2 .

Fig. 5
Fig. 5

Photoinduced viscosity versus irradiation wavelength in GeSe 9 fibers irradiated with 14   W / cm 2 . The viscosities obtained from the elongation of Fig. 3 are shown as dots. Viscosity data obtained on the same fibers from torsion measurement (squares) show consistent values.

Fig. 6
Fig. 6

Thermogram of a GeSe 9 fiber irradiated with a laser beam of intensity 150 mW and wavelength 785 nm. The thermogram was collected with a FLIR Thermocam E300 IR camera. The background behind the fiber corresponds to a heat/cool plate Echotherm IC120 tuned at exactly 40 ° C . The hot plate serves two purposes; first to generate a contrast for imaging the fiber against the ambient temperature of 28 ° C and second to provide an upper temperature reference for the thermal image.

Fig. 7
Fig. 7

Evolution of the fiber diameter after 10 min irradiation with increasing intensity I: (a) Original fiber, D = 300 μ m ; (b) I = 18   W / cm 2 , D = 180 μ m ; (c) I = 20   W / cm 2 , D = 120 μ m ; (d) I = 21   W / cm 2 , D = 70 μ m . Size of the beam irradiated on the fiber: 20   mm × 1.5   mm and wavelength of 785 nm.

Fig. 8
Fig. 8

(a) Schematics of FEWS setup for testing tapered IR fibers. (b) Microscope image of tapered fiber sensing zone. The original fiber diameter is 300 μ m and the taper length is less than 2 cm.

Fig. 9
Fig. 9

Absorption spectra of acetone tested using a normal fiber ( D = 300 μ m ) and a fiber with taper ( D = 120 130 μ m ) ; the length immersed in solution is about 15 mm.

Fig. 10
Fig. 10

(a) Absorption spectra of water tested using fibers with different diameters; the length immersed in solution is 10   mm . (b) Evolution of the main water peak absorption at 3300 cm 1 with fiber taper diameter.

Metrics