Abstract

A comprehensive theory is developed for describing the nonlinear propagation of optical pulses through silicon waveguides with nanoscale dimensions. Our theory includes not only the vectorial nature of optical modes but also the coupling between the transverse electric and magnetic modes occurring for arbitrarily polarized optical fields. We have studied the dependence of relevant nonlinear parameters on waveguide dimensions and found a class of waveguide geometries for which self-phase modulation can have a dramatic impact on the polarization state of the optical field. Self-induced polarization changes are studied for both the continuous and pulsed optical fields propagating in silicon waveguides. We also discuss the possibility of using these effects for intensity discrimination and pulse compression.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription