Abstract

The visibility of inverted domain structures using the second harmonic generation (SHG) microscope is discussed based upon the three-wave coupling equations. Without reference second harmonic (SH) waves (non-interference case), the SHG intensity at a domain boundary decreases steeply along the perpendicular direction to the domain wall, which is observed as a dark line. Thus the non-interference SHG microscope reveals the location of domain boundaries but not the domain polarity which the SHG interference microscope can do. In the case of periodically poled domain structures, the clear observation criterion is expressed with the wave-number offset between the fundamental and SH waves.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
    [CrossRef]
  2. S. Arahira and Y. Uesu, “Optical second-harmonic generation in ferroelectric dicalcium lead propionate,” J. Phys. Soc. Jpn. 60, 2461-2469 (1991).
    [CrossRef]
  3. E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
    [CrossRef] [PubMed]
  4. H. Yokota, T. Oyama, and Y. Uesu, “Second-harmonic-generation microscopic observations of polar state in Li-doped KTaO3 under an electric field,” Phys. Rev. B 72, 144103 (2005).
    [CrossRef]
  5. H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007).
    [CrossRef]
  6. S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007).
    [CrossRef]
  7. U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996).
    [CrossRef]
  8. N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008).
    [CrossRef]
  9. M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
    [CrossRef] [PubMed]
  10. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, “Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review,” J. Opt. Soc. Am. B 22, 96-118 (2005).
    [CrossRef]
  11. M. Fiebig, “Magnetoelectric phase control in multiferroic manganites,” Phase Transit. 79, 947-956 (2006).
    [CrossRef]
  12. B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007).
    [CrossRef] [PubMed]
  13. Y. Uesu, K. Yamane, and B. A. Strukov, “Optical second-harmonic generation of ammonium fluoroberyllate crystal in the incommensurate and ferroelectric phases,” Jpn. J. Appl. Phys. 28, 453-456 (1989).
    [CrossRef]
  14. W. Kleemann and J. Dec, “Comment on 'Critical behavior of ferroelectric SrTi18O3,” Phys. Rev. B 75, 027101 (2007).
    [CrossRef]
  15. Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165-2167 (1995).
    [CrossRef]
  16. S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase matched wavelength converters,” J. Appl. Phys. 81, 369-375 (1997).
    [CrossRef]
  17. Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
    [CrossRef]
  18. S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
    [CrossRef]
  19. A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375-377 (2004).
    [CrossRef]
  20. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
    [CrossRef]
  21. F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
    [CrossRef]
  22. Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004).
    [CrossRef]
  23. C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
    [CrossRef]
  24. S. J. Holmgren, V. Pasiskevicius, S. Wang, and F. Laurell, “Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals,” Opt. Lett. 28, 1555-1557 (2003).
    [CrossRef] [PubMed]
  25. Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
    [CrossRef]
  26. J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
    [CrossRef]
  27. J. Kaneshiro, Y. Uesu, and T. Fukui, “Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope,” Jpn. J. Appl. Phys. 48, 09KF09 (2009).
    [CrossRef]
  28. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]
  29. M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
    [CrossRef]
  30. A. Rosenfeldt and M. Flörsheimer, “Nondestructive remote imaging of ferroelectric domain distributions with high three-dimensional resolution,” Appl. Phys. B 73, 523-529 (2001).
    [CrossRef]
  31. J. Harris, G. Norris, and G. McConnell, “Characterization of periodically poled materials using nonlinear microscopy,” Opt. Express 16, 5667-5672 (2008).
    [CrossRef] [PubMed]
  32. R. C. Miller, “Optical harmonic generation in single crystal BaTiO3,” Phys. Rev. 134, A1313-A1319 (1964).
    [CrossRef]
  33. J. Jerphagnon, “Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities,” Phys. Rev. B 2, 1091-1098 (1970).
    [CrossRef]
  34. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

2009

J. Kaneshiro, Y. Uesu, and T. Fukui, “Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope,” Jpn. J. Appl. Phys. 48, 09KF09 (2009).
[CrossRef]

2008

J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[CrossRef]

J. Harris, G. Norris, and G. McConnell, “Characterization of periodically poled materials using nonlinear microscopy,” Opt. Express 16, 5667-5672 (2008).
[CrossRef] [PubMed]

N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008).
[CrossRef]

2007

H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007).
[CrossRef]

S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007).
[CrossRef]

B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007).
[CrossRef] [PubMed]

W. Kleemann and J. Dec, “Comment on 'Critical behavior of ferroelectric SrTi18O3,” Phys. Rev. B 75, 027101 (2007).
[CrossRef]

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

2006

M. Fiebig, “Magnetoelectric phase control in multiferroic manganites,” Phase Transit. 79, 947-956 (2006).
[CrossRef]

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

2005

M. Fiebig, V. V. Pavlov, and R. V. Pisarev, “Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review,” J. Opt. Soc. Am. B 22, 96-118 (2005).
[CrossRef]

H. Yokota, T. Oyama, and Y. Uesu, “Second-harmonic-generation microscopic observations of polar state in Li-doped KTaO3 under an electric field,” Phys. Rev. B 72, 144103 (2005).
[CrossRef]

2004

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375-377 (2004).
[CrossRef]

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004).
[CrossRef]

2003

2002

M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
[CrossRef] [PubMed]

2001

A. Rosenfeldt and M. Flörsheimer, “Nondestructive remote imaging of ferroelectric domain distributions with high three-dimensional resolution,” Appl. Phys. B 73, 523-529 (2001).
[CrossRef]

2000

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

1998

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

1997

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase matched wavelength converters,” J. Appl. Phys. 81, 369-375 (1997).
[CrossRef]

1996

U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996).
[CrossRef]

1995

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165-2167 (1995).
[CrossRef]

1992

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

1991

S. Arahira and Y. Uesu, “Optical second-harmonic generation in ferroelectric dicalcium lead propionate,” J. Phys. Soc. Jpn. 60, 2461-2469 (1991).
[CrossRef]

1989

Y. Uesu, K. Yamane, and B. A. Strukov, “Optical second-harmonic generation of ammonium fluoroberyllate crystal in the incommensurate and ferroelectric phases,” Jpn. J. Appl. Phys. 28, 453-456 (1989).
[CrossRef]

1970

J. Jerphagnon, “Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities,” Phys. Rev. B 2, 1091-1098 (1970).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

1966

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

1964

R. C. Miller, “Optical harmonic generation in single crystal BaTiO3,” Phys. Rev. 134, A1313-A1319 (1964).
[CrossRef]

Arahira, S.

S. Arahira and Y. Uesu, “Optical second-harmonic generation in ferroelectric dicalcium lead propionate,” J. Phys. Soc. Jpn. 60, 2461-2469 (1991).
[CrossRef]

Belmonte, M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

Bennemann, K. H.

U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996).
[CrossRef]

Biegalski, M. D.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Bierlein, J. D.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

Bindloss, W.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

Brillert, Ch.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Canalias, C.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

Chakhalian, J.

S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007).
[CrossRef]

Chen, C. L.

S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007).
[CrossRef]

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

Chen, L. Q.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Choudhury, S.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Dec, J.

W. Kleemann and J. Dec, “Comment on 'Critical behavior of ferroelectric SrTi18O3,” Phys. Rev. B 75, 027101 (2007).
[CrossRef]

Ferraro, P.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

Fiebig, M.

B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007).
[CrossRef] [PubMed]

M. Fiebig, “Magnetoelectric phase control in multiferroic manganites,” Phase Transit. 79, 947-956 (2006).
[CrossRef]

M. Fiebig, V. V. Pavlov, and R. V. Pisarev, “Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review,” J. Opt. Soc. Am. B 22, 96-118 (2005).
[CrossRef]

M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
[CrossRef] [PubMed]

Flörsheimer, M.

A. Rosenfeldt and M. Flörsheimer, “Nondestructive remote imaging of ferroelectric domain distributions with high three-dimensional resolution,” Appl. Phys. B 73, 523-529 (2001).
[CrossRef]

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Fragemann, A.

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375-377 (2004).
[CrossRef]

Fröhlich, D.

M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
[CrossRef] [PubMed]

Fuchs, H.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Fukui, T.

J. Kaneshiro, Y. Uesu, and T. Fukui, “Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope,” Jpn. J. Appl. Phys. 48, 09KF09 (2009).
[CrossRef]

J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[CrossRef]

Goltsev, A. V.

M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
[CrossRef] [PubMed]

Gopalan, V.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Grilli, S.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

Haeni, J. H.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Harris, J.

Heuer, L.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Hofmann, D.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Holmgren, S. J.

Hsiung, H.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

Hübner, W.

U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon, “Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities,” Phys. Rev. B 2, 1091-1098 (1970).
[CrossRef]

Jia, Q. X.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Jolly, S.

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

Kaneshiro, J.

J. Kaneshiro, Y. Uesu, and T. Fukui, “Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope,” Jpn. J. Appl. Phys. 48, 09KF09 (2009).
[CrossRef]

J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[CrossRef]

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

Karlsson, H.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

Kato, N.

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

Kawado, S.

J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[CrossRef]

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

Kiat, J. M.

H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007).
[CrossRef]

Kleemann, W.

W. Kleemann and J. Dec, “Comment on 'Critical behavior of ferroelectric SrTi18O3,” Phys. Rev. B 75, 027101 (2007).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Kubitscheck, U.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Kurimura, S.

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase matched wavelength converters,” J. Appl. Phys. 81, 369-375 (1997).
[CrossRef]

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165-2167 (1995).
[CrossRef]

Laurell, F.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375-377 (2004).
[CrossRef]

S. J. Holmgren, V. Pasiskevicius, S. Wang, and F. Laurell, “Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals,” Opt. Lett. 28, 1555-1557 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

Lemanov, V. V.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Levy, J.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Li, Y. L.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Liu, J.

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

Liu, S. W.

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007).
[CrossRef]

Lottermoser, Th.

M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
[CrossRef] [PubMed]

Luce, T. A.

U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996).
[CrossRef]

Ma, H. Z.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Malibert, C.

H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007).
[CrossRef]

McConnell, G.

McKinstry, S. T.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Miller, R. C.

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

R. C. Miller, “Optical harmonic generation in single crystal BaTiO3,” Phys. Rev. 134, A1313-A1319 (1964).
[CrossRef]

Mishina, E. D.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Misuryaev, T. V.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Miyano, K.

N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008).
[CrossRef]

Morozov, A. I.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Natale, P. D.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

Norris, G.

Ogawa, N.

N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008).
[CrossRef]

Ogimoto, Y.

N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008).
[CrossRef]

Oyama, T.

H. Yokota, T. Oyama, and Y. Uesu, “Second-harmonic-generation microscopic observations of polar state in Li-doped KTaO3 under an electric field,” Phys. Rev. B 72, 144103 (2005).
[CrossRef]

Paschotta, R.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Pasiskevicius, V.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375-377 (2004).
[CrossRef]

S. J. Holmgren, V. Pasiskevicius, S. Wang, and F. Laurell, “Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals,” Opt. Lett. 28, 1555-1557 (2003).
[CrossRef] [PubMed]

Pavlov, V. V.

Pedersen, K.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

Pisarev, R. V.

M. Fiebig, V. V. Pavlov, and R. V. Pisarev, “Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review,” J. Opt. Soc. Am. B 22, 96-118 (2005).
[CrossRef]

M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
[CrossRef] [PubMed]

Pustogowa, U.

U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996).
[CrossRef]

Rasing, Th.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Rivera, J. P.

B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007).
[CrossRef] [PubMed]

Roelofs, M. G.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

Rosenfeldt, A.

A. Rosenfeldt and M. Flörsheimer, “Nondestructive remote imaging of ferroelectric domain distributions with high three-dimensional resolution,” Appl. Phys. B 73, 523-529 (2001).
[CrossRef]

Satoh, T.

N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008).
[CrossRef]

Savage, A.

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

Schlom, D. G.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Schmid, H.

B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007).
[CrossRef] [PubMed]

Schreiber, G.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Sharan, A.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Sherstyuk, N. E.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Shibata, H.

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004).
[CrossRef]

Shimada, S.

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004).
[CrossRef]

Sigov, A. S.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Skettrup, T.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

Sohler, W.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Strukov, B. A.

Y. Uesu, K. Yamane, and B. A. Strukov, “Optical second-harmonic generation of ammonium fluoroberyllate crystal in the incommensurate and ferroelectric phases,” Jpn. J. Appl. Phys. 28, 453-456 (1989).
[CrossRef]

Suna, A.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

Suzuki, S.

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004).
[CrossRef]

Uesu, Y.

J. Kaneshiro, Y. Uesu, and T. Fukui, “Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope,” Jpn. J. Appl. Phys. 48, 09KF09 (2009).
[CrossRef]

J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[CrossRef]

H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007).
[CrossRef]

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

H. Yokota, T. Oyama, and Y. Uesu, “Second-harmonic-generation microscopic observations of polar state in Li-doped KTaO3 under an electric field,” Phys. Rev. B 72, 144103 (2005).
[CrossRef]

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004).
[CrossRef]

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase matched wavelength converters,” J. Appl. Phys. 81, 369-375 (1997).
[CrossRef]

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165-2167 (1995).
[CrossRef]

S. Arahira and Y. Uesu, “Optical second-harmonic generation in ferroelectric dicalcium lead propionate,” J. Phys. Soc. Jpn. 60, 2461-2469 (1991).
[CrossRef]

Y. Uesu, K. Yamane, and B. A. Strukov, “Optical second-harmonic generation of ammonium fluoroberyllate crystal in the incommensurate and ferroelectric phases,” Jpn. J. Appl. Phys. 28, 453-456 (1989).
[CrossRef]

Van Aken, B. B.

B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007).
[CrossRef] [PubMed]

Vasudevarao, A.

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Verbeek, C.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

Wang, S.

Xiao, M.

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007).
[CrossRef]

Yamamoto, Y.

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165-2167 (1995).
[CrossRef]

Yamane, K.

Y. Uesu, K. Yamane, and B. A. Strukov, “Optical second-harmonic generation of ammonium fluoroberyllate crystal in the incommensurate and ferroelectric phases,” Jpn. J. Appl. Phys. 28, 453-456 (1989).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Yokota, H.

J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[CrossRef]

H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007).
[CrossRef]

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

H. Yokota, T. Oyama, and Y. Uesu, “Second-harmonic-generation microscopic observations of polar state in Li-doped KTaO3 under an electric field,” Phys. Rev. B 72, 144103 (2005).
[CrossRef]

Yuan, Z.

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

Appl. Phys. B

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

A. Rosenfeldt and M. Flörsheimer, “Nondestructive remote imaging of ferroelectric domain distributions with high three-dimensional resolution,” Appl. Phys. B 73, 523-529 (2001).
[CrossRef]

Appl. Phys. Lett.

Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007).
[CrossRef]

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165-2167 (1995).
[CrossRef]

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375-377 (2004).
[CrossRef]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998).
[CrossRef]

Ferroelectrics

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004).
[CrossRef]

J. Appl. Phys.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007).
[CrossRef]

J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992).
[CrossRef]

S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007).
[CrossRef]

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase matched wavelength converters,” J. Appl. Phys. 81, 369-375 (1997).
[CrossRef]

U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Soc. Jpn.

S. Arahira and Y. Uesu, “Optical second-harmonic generation in ferroelectric dicalcium lead propionate,” J. Phys. Soc. Jpn. 60, 2461-2469 (1991).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Uesu, K. Yamane, and B. A. Strukov, “Optical second-harmonic generation of ammonium fluoroberyllate crystal in the incommensurate and ferroelectric phases,” Jpn. J. Appl. Phys. 28, 453-456 (1989).
[CrossRef]

J. Kaneshiro, Y. Uesu, and T. Fukui, “Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope,” Jpn. J. Appl. Phys. 48, 09KF09 (2009).
[CrossRef]

Nature

B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007).
[CrossRef] [PubMed]

M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phase Transit.

M. Fiebig, “Magnetoelectric phase control in multiferroic manganites,” Phase Transit. 79, 947-956 (2006).
[CrossRef]

Phys. Rev.

R. C. Miller, “Optical harmonic generation in single crystal BaTiO3,” Phys. Rev. 134, A1313-A1319 (1964).
[CrossRef]

Phys. Rev. B

J. Jerphagnon, “Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities,” Phys. Rev. B 2, 1091-1098 (1970).
[CrossRef]

N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008).
[CrossRef]

H. Yokota, T. Oyama, and Y. Uesu, “Second-harmonic-generation microscopic observations of polar state in Li-doped KTaO3 under an electric field,” Phys. Rev. B 72, 144103 (2005).
[CrossRef]

H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007).
[CrossRef]

W. Kleemann and J. Dec, “Comment on 'Critical behavior of ferroelectric SrTi18O3,” Phys. Rev. B 75, 027101 (2007).
[CrossRef]

Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006).
[CrossRef]

Phys. Rev. Lett.

E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000).
[CrossRef] [PubMed]

Other

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated SHG intensity along the x-axis in the vicinity of the domain boundary. (a) and (b) show results of the non-interference case and (c) and (d) show those of the interference case. (a) and (c) indicate the SHG intensities near the sample surface, and (b) and (d) indicate those inside the sample. The Cartesian axes used in this calculation are also indicated, where the z-axis is parallel to the incident beam axis and the domain wall is the ( y , z ) plane.

Fig. 2
Fig. 2

Calculated SHG intensity changes of periodically inverted domain structures along the x-axis. (a), (b), (c), and (d) show results obtained inside the samples with D = 3.5 μ m , 10 μ m , 20 μ m , and 200 μ m , respectively.

Fig. 3
Fig. 3

Optical setup of the SHG microscope. The SHG interference images are obtained using two paths: one for changing the phase of the fundamental wave and another for generating SHG reference waves. To get the non-interference images, the path to the reference SHG plate is shut off.

Fig. 4
Fig. 4

The observed non-interference (a) and interference SHG (b) images of the X Z cross section of the Y-cut MgSLN QPM.

Fig. 5
Fig. 5

The observed SHG non-interference images of the X Z cross sections of the MgCLN QPM. The numerals indicate the Y position of the X Z cross section.

Fig. 6
Fig. 6

The observed non-interference images of the X Y cross section of the MgCLN QPM. The numerals above each image indicate the Z position of the X Y cross section.

Fig. 7
Fig. 7

Domain boundary model for calculations. Figures (a), (b), and (c) indicate the results of numerical calculations with θ = 0 ° , θ = 0.1 ° , and θ = 1 ° , respectively, as well as L = 400 μ m , and D = 20 μ m . The experimental result depicted from Fig. 6 is also indicated in (d) for the sake of comparison.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

2 E ε μ 2 E t 2 = μ 2 P NL t 2 + × M t μ 2 ( Q ̂ ) t 2 .
( P NL ) i = ε 0 d i j k E j E k .
Δ k = k 2 2 k 1 .
d ( x , x 0 ) = { d 0 for   x < x 0 + d 0 for   x x 0 . }
t 2 A 2 2 i k 2 A 2 z = 4 ω 2 c 2 d ( x , x 0 ) A 1 2 e i Δ k z .
d ( x , x 0 ) e a ( x 2 + y 2 ) d x d y = 2 d 0 π a 0 x 0 e a x 2 d x = d 0 π a erf ( a x 0 ) ,
erf ( x ) = 2 π 0 x e t 2 d t .
a = i k 1 z l f + i z 0 .
z 0 = λ π ( NA ) 2 .
A 2 z = γ z 0 d 0 i z 0 e i Δ k z z l f + i z 0 erf ( x 0 i k 1 z l f + i z 0 ) .
γ = 2 π A 10 2 n 1 n 2 .
I 2 ( L , x ) | A 2 ( L , x ) + A ref e i ϕ | 2 .
d ( x , x 0 ) = m = 0 4 d 0 ( 2 m + 1 ) π sin [ ( 2 m + 1 ) π D ( x x 0 ) ] .
A 2 z = Γ z 0 m = 0 4 d 0 ( 2 m + 1 ) π sin [ ( 2 m + 1 ) π x 0 D ] f m ( z ) e i Δ k z .
f m ( z ) i z 0 z l f + i z 0 exp [ ( 2 m + 1 ) 2 π 2 4 i k 1 D 2 ( z l f + i z 0 ) ] .
a m ( L ) 0 L f m ( z ) e i Δ k z d z = 0 L i z 0 e i Δ k z z l f + i z 0 exp [ ( 2 m + 1 ) 2 π 2 4 i k 1 D 2 ( z l f + i z 0 ) ] d z = exp [ ( 2 m + 1 ) 2 π 2 4 i k 1 D 2 ( z 0 + i l f ) ] 0 L i z 0 z l f + i z 0 exp [ i ( Δ k + ( 2 m + 1 ) 2 π 2 4 k 1 D 2 ) z ] d z .
Δ k m Δ k + ( 2 m + 1 ) 2 π 2 4 k 1 D 2 .
( 2 m + 1 ) 2 π 2 > 4 D 2 k 1 Δ k .
m > ξ D π k 1 | Δ k | 1 2 .
A 2 ( L , x ) = Γ m = 0 N 4 d 0 a m ( L ) ( 2 m + 1 ) π sin [ ( 2 m + 1 ) π x D ] .
S N ( L , x ) | m = 0 N 4 d 0 a m ( L ) ( 2 m + 1 ) π sin [ ( 2 m + 1 ) π x D ] | 2 = p , q = 0 N 16 d 0 2 a p ( L ) a q ( L ) ( 2 p + 1 ) ( 2 q + 1 ) π 2 sin [ ( 2 p + 1 ) π x D ] sin [ ( 2 q + 1 ) π x D ] = p , q = 0 N 8 d 0 2 a p ( L ) a q ( L ) ( 2 p + 1 ) ( 2 q + 1 ) π 2 { cos [ 2 ( p q ) π x D ] cos [ 2 ( p + q + 1 ) π x D ] } .
r x D 2 N + 1 > D 2 N + 1 = π 2 k 1 | Δ k | = 1 2 λ L c 2 n 1 .
D > π 2 k 1 | Δ k | = r x .
x = θ ( z L 2 ) .

Metrics