Abstract

We present the results of studies of nanoripples formation during interaction of the 800nm, 120, and 35fs pulses with semiconductor surfaces. Simultaneous appearance of the ripples with the period (700nm) close to the wavelength of interacting radiation and considerably smaller period (180nm) was achieved. We discuss the experimental conditions for the formation of these nanoripples (incidence angle, polarization, number of shots, etc.). We show a decisive role of surrounding medium on the quality of nanoripples formation. The self-organization of high-quality nanoripples was clearly shown in the case of dense surrounding medium (methanol), while in the case of insufficient amount of surrounding material (i.e., at different vacuum conditions), the quality of ripples considerably decreased.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription