Abstract

We present the results of studies of nanoripples formation during interaction of the 800nm, 120, and 35fs pulses with semiconductor surfaces. Simultaneous appearance of the ripples with the period (700nm) close to the wavelength of interacting radiation and considerably smaller period (180nm) was achieved. We discuss the experimental conditions for the formation of these nanoripples (incidence angle, polarization, number of shots, etc.). We show a decisive role of surrounding medium on the quality of nanoripples formation. The self-organization of high-quality nanoripples was clearly shown in the case of dense surrounding medium (methanol), while in the case of insufficient amount of surrounding material (i.e., at different vacuum conditions), the quality of ripples considerably decreased.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  2. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol. 34, 37–43 (2002).
    [CrossRef]
  3. J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [CrossRef]
  4. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84, 10–12 (2004).
    [CrossRef]
  5. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
    [CrossRef]
  6. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef] [PubMed]
  7. A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
    [CrossRef]
  8. N. Yasumaru, K. Miyazaki, and J. Kuichi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys. A: Mater. Sci. Process. 81, 933–937 (2005).
    [CrossRef]
  9. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
    [CrossRef]
  10. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006).
    [CrossRef] [PubMed]
  11. G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
    [CrossRef]
  12. F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A: Mater. Sci. Process. 79, 1429–1432 (2004).
  13. T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
    [CrossRef]
  14. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3690 (1965).
    [CrossRef]
  15. T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100 nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
    [CrossRef]
  16. J. R. Meyer, M. P. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: laser damage in Ge, Si, InSb and GaAs,” J. Appl. Phys. 51, 5513–5522 (1980).
    [CrossRef]
  17. D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
    [CrossRef]
  18. E. Kroger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76, 515–523 (1976).
    [CrossRef]
  19. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
    [CrossRef]
  20. T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
    [CrossRef]
  21. G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
    [CrossRef]
  22. S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
    [CrossRef]

2007 (1)

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100 nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

2006 (5)

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

N. Yasumaru, K. Miyazaki, and J. Kuichi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys. A: Mater. Sci. Process. 81, 933–937 (2005).
[CrossRef]

2004 (3)

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84, 10–12 (2004).
[CrossRef]

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A: Mater. Sci. Process. 79, 1429–1432 (2004).

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

2003 (4)

S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

2002 (2)

P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol. 34, 37–43 (2002).
[CrossRef]

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

2000 (1)

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

1999 (1)

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

1980 (1)

J. R. Meyer, M. P. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: laser damage in Ge, Si, InSb and GaAs,” J. Appl. Phys. 51, 5513–5522 (1980).
[CrossRef]

1976 (1)

E. Kroger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76, 515–523 (1976).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3690 (1965).
[CrossRef]

Baba, M.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

Bartoli, F. J.

J. R. Meyer, M. P. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: laser damage in Ge, Si, InSb and GaAs,” J. Appl. Phys. 51, 5513–5522 (1980).
[CrossRef]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Bindhu, C.

S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3690 (1965).
[CrossRef]

Bonse, J.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

Brown, W. D.

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Costache, F.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A: Mater. Sci. Process. 79, 1429–1432 (2004).

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Crawford, T. H. R.

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100 nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

Daminelli, G.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Dong, Y.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84, 10–12 (2004).
[CrossRef]

Gaeris, A.

S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Harilal, S.

S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Haugen, H. K.

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100 nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Huang, M.

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

Juodkazis, S.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

Kapoor, A.

P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol. 34, 37–43 (2002).
[CrossRef]

Kautek, W.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Kondo, T.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

Kouteva-Arguirova, S.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A: Mater. Sci. Process. 79, 1429–1432 (2004).

Kretschmann, E.

E. Kroger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76, 515–523 (1976).
[CrossRef]

Kroger, E.

E. Kroger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76, 515–523 (1976).
[CrossRef]

Kruer, M. P.

J. R. Meyer, M. P. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: laser damage in Ge, Si, InSb and GaAs,” J. Appl. Phys. 51, 5513–5522 (1980).
[CrossRef]

Krüger, J.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Kuichi, J.

N. Yasumaru, K. Miyazaki, and J. Kuichi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys. A: Mater. Sci. Process. 81, 933–937 (2005).
[CrossRef]

Kumar, G. R.

P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol. 34, 37–43 (2002).
[CrossRef]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

Liang, G. Q.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Malshe, A. P.

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

Mao, W. D.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Matsuo, S.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

Meyer, J. R.

J. R. Meyer, M. P. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: laser damage in Ge, Si, InSb and GaAs,” J. Appl. Phys. 51, 5513–5522 (1980).
[CrossRef]

Misawa, H.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

Miyazaki, K.

N. Yasumaru, K. Miyazaki, and J. Kuichi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys. A: Mater. Sci. Process. 81, 933–937 (2005).
[CrossRef]

Mizeikis, V.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

Molian, P.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84, 10–12 (2004).
[CrossRef]

Molian, P. A.

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

Najmabadi, F.

S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Ozkan, A. M.

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

Pandelov, S.

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Pu, Y. Y.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

Railcar, T. A.

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Reif, J.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A: Mater. Sci. Process. 79, 1429–1432 (2004).

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Shirk, M. D.

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Singh, P.

P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol. 34, 37–43 (2002).
[CrossRef]

Sokolowski-Tinten, K.

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

Suzuki, M.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Tillack, M.

S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Tripathi, K. N.

P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol. 34, 37–43 (2002).
[CrossRef]

von der Linde, D.

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

Wang, H. Z.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Wu, X. J.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

Yasumaru, N.

N. Yasumaru, K. Miyazaki, and J. Kuichi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys. A: Mater. Sci. Process. 81, 933–937 (2005).
[CrossRef]

Zeng, Z. H.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

Zou, H. H.

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process. (2)

N. Yasumaru, K. Miyazaki, and J. Kuichi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys. A: Mater. Sci. Process. 81, 933–937 (2005).
[CrossRef]

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A: Mater. Sci. Process. 79, 1429–1432 (2004).

Appl. Phys. Lett. (7)

T. Q. Jia, F. L. Zhao, M. Huang, H. X. Chen, J. R. Qiu, R. X. Li, and Z. Z. Xu, “Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams,” Appl. Phys. Lett. 88, 111117 (2006).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, “ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air,” Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

G. Q. Liang, W. D. Mao, Y. Y. Pu, H. H. Zou, H. Z. Wang, and Z. H. Zeng, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006).
[CrossRef]

A. M. Ozkan, A. P. Malshe, T. A. Railcar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716–3718 (1999).
[CrossRef]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84, 10–12 (2004).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

Appl. Surf. Sci. (3)

J. Reif, F. Costache, M. Henyk, and S. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100 nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

J. Appl. Phys. (4)

J. R. Meyer, M. P. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: laser damage in Ge, Si, InSb and GaAs,” J. Appl. Phys. 51, 5513–5522 (1980).
[CrossRef]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3690 (1965).
[CrossRef]

S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, and A. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol. 34, 37–43 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

E. Kroger and E. Kretschmann, “Surface plasmon and polariton dispersion at rough boundaries,” Phys. Status Solidi B 76, 515–523 (1976).
[CrossRef]

Thin Solid Films (1)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM images of the (a) central part of ablated spot of GaAs wafer and (b) peripheral area of the same spot. The ablated structures of silicon wafer are presented in the cases of (c) linear and (d) circular polarization.

Fig. 2
Fig. 2

(a–c) Three SEM images of the ripples on the SiC surface showing different periods (730 and 180 nm ). (d) High resolution SEM of the SWLIPSS produced on the SiC surface.

Fig. 3
Fig. 3

Nanoripple formation of the surfaces using the cylindrical focusing of femtosecond radiation. (a) The chain of nanoholes produced on the surface of silicon waver. (b) Nanoripple structure observed in the case of ablation of the GaAs using the cylindrical lens.

Fig. 4
Fig. 4

SEM images of the nanostructures formed on the silicon wafer at different conditions of surrounding medium. (a) methanol; (b) the same pattern at higher resolution; (c) air, 760  torr ; (d) air, 100  torr ; (e) air, 1  torr ; (f) vacuum, 10 1  torr .

Metrics