Abstract

We have studied plasma formation and relaxation dynamics along with the corresponding topography modifications in fused silica and sapphire induced by single femtosecond laser pulses (800 nm and 120 fs). These materials, representative of high bandgap amorphous and crystalline dielectrics, respectively, require nonlinear mechanisms to absorb the laser light. The study employed a femtosecond time-resolved microscopy technique that allows obtaining reflectivity and transmission images of the material surface at well-defined temporal delays after the arrival of the pump pulse which excites the dielectric material. The transient evolution of the free-electron plasma formed can be followed by combining the time-resolved optical data with a Drude model to estimate transient electron densities and skin depths. The temporal evolution of the optical properties is very similar in both materials within the first few hundred picoseconds, including the formation of a high reflectivity ring at about 7 ps. In contrast, at longer delays (100 ps–20 ns) the behavior of both materials differs significantly, revealing a longer lasting ablation process in sapphire. Moreover, transient images of sapphire show a concentric ring pattern surrounding the ablation crater, which is not observed in fused silica. We attribute this phenomenon to optical diffraction at a transient elevation of the ejected molten material at the crater border. On the other hand, the final topography of the ablation crater is radically different for each material. While in fused silica a relatively smooth crater with two distinct regimes is observed, sapphire shows much steeper crater walls, surrounded by a weak depression along with cracks in the material surface. These differences are explained in terms of the most relevant thermal and mechanical properties of the material. Despite these differences the maximum crater depth is comparable in both material at the highest fluences used (16  J/cm2). The evolution of the crater depth as a function of fluence can be described taking into account the individual bandgap of each material.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
    [CrossRef] [PubMed]
  2. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16, 16265–16271 (2008).
    [CrossRef] [PubMed]
  3. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006).
    [CrossRef]
  4. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
    [CrossRef] [PubMed]
  5. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
    [CrossRef]
  6. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [CrossRef]
  7. F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
    [CrossRef]
  8. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
    [CrossRef]
  9. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
    [CrossRef]
  10. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
    [CrossRef]
  11. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
    [CrossRef]
  12. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
    [CrossRef]
  13. I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
    [CrossRef]
  14. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
    [CrossRef]
  15. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
    [CrossRef]
  16. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
    [CrossRef]
  17. D. von der Linde and H. Schueler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
    [CrossRef]
  18. M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2, 595–599 (1985).
    [CrossRef]
  19. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
    [CrossRef]
  20. H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
    [CrossRef]
  21. L. Sudrie, M. Franco, D. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
    [CrossRef]
  22. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by used of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [CrossRef]
  23. D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
    [CrossRef]
  24. A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
    [CrossRef]
  25. S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
    [CrossRef]
  26. J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995).
    [CrossRef]
  27. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Contrib. Plasma Phys. 47, 360–367 (2007).
    [CrossRef]
  28. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
    [CrossRef]
  29. M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).
  30. C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
    [CrossRef]
  31. Different models to estimate the scattering times have been proposed in the literature. Whereas propose a fixed scattering time, establish a relation to the electronic density and the critical electron density. We have decided to follow the second approach.
  32. M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
    [CrossRef]
  33. R. F. Haglund and R. Kelly, “Electronic processes in sputtering by laser beams,” in Fundamental Processes in Sputtering of Atoms and Molecules (SPUT2), P.Sigmund, ed. (Royal Danish Academy of Sciences and Letters, 1993), pp. 527–592.
  34. G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996).
    [CrossRef]
  35. P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
    [CrossRef] [PubMed]
  36. F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
    [CrossRef]
  37. Q. Sun, H. Jiang, Y. Li, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
    [CrossRef] [PubMed]
  38. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [CrossRef]
  39. S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993).
    [CrossRef]
  40. T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
    [CrossRef]
  41. O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
    [CrossRef]
  42. S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
    [CrossRef]
  43. D. R. Lide and H. V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data (CRC, 1994).
  44. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997).
    [CrossRef]
  45. R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys.: Conf. Ser. 59, 333–337 (2007).
    [CrossRef]
  46. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef] [PubMed]
  47. N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
    [CrossRef]
  48. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46, 1061–1072 (1982).
    [CrossRef]
  49. G. Urbain, “Viscosite de l’alumine liquide,” Rev. Int. Hautes Temp. Refract. 19, 55–57 (1982).

2008 (3)

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
[CrossRef]

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16, 16265–16271 (2008).
[CrossRef] [PubMed]

2007 (6)

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Contrib. Plasma Phys. 47, 360–367 (2007).
[CrossRef]

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys.: Conf. Ser. 59, 333–337 (2007).
[CrossRef]

2006 (6)

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006).
[CrossRef]

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

2005 (4)

Q. Sun, H. Jiang, Y. Li, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
[CrossRef] [PubMed]

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
[CrossRef]

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
[CrossRef]

2004 (4)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef] [PubMed]

M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
[CrossRef]

2003 (1)

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

2002 (1)

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

2001 (1)

L. Sudrie, M. Franco, D. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

2000 (2)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

1999 (1)

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

1998 (3)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
[CrossRef]

1997 (2)

1996 (4)

D. von der Linde and H. Schueler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

1995 (1)

J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995).
[CrossRef]

1994 (1)

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

1993 (1)

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993).
[CrossRef]

1985 (1)

1982 (3)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46, 1061–1072 (1982).
[CrossRef]

G. Urbain, “Viscosite de l’alumine liquide,” Rev. Int. Hautes Temp. Refract. 19, 55–57 (1982).

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
[CrossRef] [PubMed]

Anderson, C. D.

J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995).
[CrossRef]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Antonetti, A.

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Aoki, N.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Ashkenasi, D.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

Ashmore, J.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

Audebert, P.

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Averback, R. S.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Bachelier, G.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

Ben-Yakar, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Boing, M.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

Bonse, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).

Bottinga, Y.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46, 1061–1072 (1982).
[CrossRef]

Bulgakova, N. M.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
[CrossRef]

Burakov, I. M.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
[CrossRef]

Bussière, B.

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Byer, R. L.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

Cahill, D. G.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Campbell, E. E. B.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

Canova, F.

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Chalupsky, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Chambaret, J. -P.

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Cheng, C. F.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Cheng, Y.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Chowdhury, I. H.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
[CrossRef]

Cihelka, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Corkum, P. B.

Daguzan, P.

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Delaporte, P.

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Downer, M. C.

Düsterer, S.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Ehrentraut, L.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Feit, M. D.

M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Feng, H.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Fork, R. L.

Förster, E.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Franco, M.

L. Sudrie, M. Franco, D. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Franco, M. A.

Frastev, K.

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Gaudin, J.

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

Gauthier, J. C.

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Gauthier, J. -C.

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

Gawelda, W.

D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Geindre, J. P.

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Geindre, J. -P.

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

Gobert, O.

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

Gong, Q.

Gottmann, J.

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys.: Conf. Ser. 59, 333–337 (2007).
[CrossRef]

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006).
[CrossRef]

Grillon, G.

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Gundrum, B.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Haglund, R. F.

R. F. Haglund and R. Kelly, “Electronic processes in sputtering by laser beams,” in Fundamental Processes in Sputtering of Atoms and Molecules (SPUT2), P.Sigmund, ed. (Royal Danish Academy of Sciences and Letters, 1993), pp. 527–592.

Hajkova, V.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Hamoniaux, G.

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Harkin, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

Hashida, M.

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

Helvajian, H.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Herrmann, R.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

Hertel, I. V.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
[CrossRef]

Hnatovsky, C.

Horn, A.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006).
[CrossRef]

Hunt, A. J.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef] [PubMed]

Husakou, A.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

Itina, T.

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Jia, T. Q.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Jiang, H.

Joglekar, A. P.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef] [PubMed]

Juha, L.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Jurek, M.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Kawachi, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Kehiaian, H. V.

D. R. Lide and H. V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data (CRC, 1994).

Kelly, R.

R. F. Haglund and R. Kelly, “Electronic processes in sputtering by laser beams,” in Fundamental Processes in Sputtering of Atoms and Molecules (SPUT2), P.Sigmund, ed. (Royal Danish Academy of Sciences and Letters, 1993), pp. 527–592.

Klinger, D.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Komashko, A. M.

M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
[CrossRef]

Koptyaev, S.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Kreutz, E. W.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006).
[CrossRef]

Krishnan, S.

J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995).
[CrossRef]

Krzywinski, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Kuba, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Li, R. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Li, X. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Li, Y.

Lide, D. R.

D. R. Lide and H. V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data (CRC, 1994).

Liu, H.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef] [PubMed]

Liu, J. M.

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Masuda, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Mermillod-Blondin, A.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef] [PubMed]

Meynadier, P.

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

Midorikawa, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Miyaji, G.

Miyazaki, K.

Mourou, G.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef] [PubMed]

Mysyrowicz, A.

Nibbering, E. T. J.

Nietubyc, R.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Noack, F.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

Nordine, P. C.

J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995).
[CrossRef]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Pelka, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Perdrix, M.

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

Perner, F.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Prade, B. S.

Prade, D.

L. Sudrie, M. Franco, D. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Preuss, S.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993).
[CrossRef]

Puerto, D.

D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

Quoix, C.

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

Rajeev, P. P.

Rayner, D. M.

Redlin, H.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Rethfeld, B.

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Contrib. Plasma Phys. 47, 360–367 (2007).
[CrossRef]

Richet, P.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46, 1061–1072 (1982).
[CrossRef]

Rosenfeld, A.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
[CrossRef]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

Rubenchik, A. M.

M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Santos, A. D.

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Schueler, H.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

D. von der Linde and H. Schueler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
[CrossRef]

Semerok, A.

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

Sentis, M.

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Shank, C. V.

Shihoyama, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Siegel, J.

D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

Simova, E.

Sobierajski, R.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Sokolowski-Tinten, K.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

Solis, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

Späth, M.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993).
[CrossRef]

Stoian, R.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
[CrossRef]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

Stojanovic, N.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Stone, H. A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Stuke, M.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993).
[CrossRef]

Sudrie, L.

L. Sudrie, M. Franco, D. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Sugioka, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Sun, H. Y.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Sun, Q.

Taylor, R. S.

Temnov, V. V.

Toleikis, S.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Toyoda, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Tschentscher, T.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Urbain, G.

G. Urbain, “Viscosite de l’alumine liquide,” Rev. Int. Hautes Temp. Refract. 19, 55–57 (1982).

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46, 1061–1072 (1982).
[CrossRef]

Uteza, O.

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

Varel, H.

A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

Velyhan, A.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

von der Linde, D.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

D. von der Linde and H. Schueler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
[CrossRef]

Wagner, R.

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys.: Conf. Ser. 59, 333–337 (2007).
[CrossRef]

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006).
[CrossRef]

Wähmer, M.

A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997).
[CrossRef]

Wang, H. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Watanabe, F.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Weber, J. K. R.

J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995).
[CrossRef]

Weiner, A. M.

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
[CrossRef]

Winkler, S. W.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).

Wu, A. Q.

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
[CrossRef]

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

Wu, Z.

Xu, N. S.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Xu, X.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
[CrossRef]

Xu, Z. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

Yang, H.

Zastrau, U.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Zhang, Y.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993).
[CrossRef]

Zhou, P.

Appl. Phys. A (8)

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
[CrossRef]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[CrossRef]

M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996).
[CrossRef]

Appl. Phys. B (1)

F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006).
[CrossRef]

Appl. Surf. Sci. (5)

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006).
[CrossRef]

A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998).
[CrossRef]

O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997).
[CrossRef]

Contrib. Plasma Phys. (1)

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Contrib. Plasma Phys. 47, 360–367 (2007).
[CrossRef]

Geochim. Cosmochim. Acta (1)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46, 1061–1072 (1982).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995).
[CrossRef]

J. Appl. Phys. (2)

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

J. Phys.: Conf. Ser. (1)

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys.: Conf. Ser. 59, 333–337 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996).
[CrossRef]

Opt. Commun. (1)

L. Sudrie, M. Franco, D. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (4)

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998).
[CrossRef]

Rev. Int. Hautes Temp. Refract. (1)

G. Urbain, “Viscosite de l’alumine liquide,” Rev. Int. Hautes Temp. Refract. 19, 55–57 (1982).

Other (4)

D. R. Lide and H. V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data (CRC, 1994).

R. F. Haglund and R. Kelly, “Electronic processes in sputtering by laser beams,” in Fundamental Processes in Sputtering of Atoms and Molecules (SPUT2), P.Sigmund, ed. (Royal Danish Academy of Sciences and Letters, 1993), pp. 527–592.

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).

Different models to estimate the scattering times have been proposed in the literature. Whereas propose a fixed scattering time, establish a relation to the electronic density and the critical electron density. We have decided to follow the second approach.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The upper row shows characteristic surface reflectivity images ( λ probe = 400   nm ) of (a1)–(a3) fused silica and (b1)–(b3) sapphire at different delay times Δ t after arrival of the pump pulse ( λ pump = 800   nm ) . The dashed ellipses mark the border of the ablation crater. The image size is 58 μ m × 37 μ m and the contrast was optimized to better visualize their most characteristic features. The graphs in the lower row [(a4) for fused silica and (b4) for sapphire] show the temporal evolution of the surface reflectivity at different local fluences corresponding to different spatial positions as indicated in (a2) and (b2). The dashed horizontal lines indicate the initial surface reflectivity R 0 before irradiation.

Fig. 2
Fig. 2

The upper row shows transmission images ( λ probe = 400   nm ) of (a1)–(a3) fused silica and (b1)–(b3) sapphire at different delay times Δ t after arrival of the pump pulse ( λ pump = 800   nm ) . The images size is 58 μ m × 37 μ m and the contrast was optimized to better visualize their most characteristic features. Lower row: The graphs in the lower row [(a4) for fused silica and (b4) for sapphire] show the temporal evolution of the transmission at different local fluences corresponding to different spatial positions as indicated in (a2) and (b2). The dashed horizontal lines indicate the initial sample transmission T 0 before irradiation.

Fig. 3
Fig. 3

Calculations of surface reflectivity (solid line) and skin depth (dashed line) of a free-electron plasma surface layer as functions of the electron density n e in (a) fused silica and (b) sapphire using the Drude model at the probe beam wavelength of 400 nm. The full circles mark the maximum experimental reflectivity values at high and low fluences, R 1 and R 2 , respectively, whereas the open circles mark the resulting skin depth values α 1 1 and α 2 1 .

Fig. 4
Fig. 4

Upper row: (a1),(a2) and (b1),(b2) show the time-resolved surface reflectivity images ( λ probe = 400   nm ) of (a) fused silica and (b) sapphire at 7 ps ( R 7   ps ) and few seconds ( R ) after arrival of the pump pulse [(a) 11.9 and (b) 12.5   J / cm 2 ], whereas (a3) and (b3) show WLM images of the same region. The images size is 58 μ m × 37 μ m and the contrast has been optimized. Lower row: (a4) and (b4) show horizontal topography profiles through the crater center obtained by means of an OIM. The arrows indicate a change in slope of the crater walls in fused silica (a4) and a weak surface depression surrounding the ablation crater in sapphire (b4).

Fig. 5
Fig. 5

Crater depth in (a) fused silica and (b) sapphire as a function of the incident peak laser fluence. The solid lines represent least-squares-fits according to Eq. (2) for (a) pure five-photon absorption in fused silica and (b) pure seven-photon absorption in sapphire. The dashed lines are fits according to the Lambert–Beer Law [12] for linear absorption in both materials, illustrating the pronounced deviation of the data from this case.

Fig. 6
Fig. 6

Images: (a1)–(a4) and (b1)–(b4) show surface regions after irradiation with a single femtosecond laser pulse at (a) 5.8   J / cm 2 in fused silica and (b) 7.6   J / cm 2 in sapphire. The images have been recorded with the femtosecond-microscope at a delay of 7.5 ps [(a2),(b2)] a few seconds after the arrival of the pump pulse [(a1),(b1)], with (a3),(b3) an AFM and (a4),(b4) the WLM. The image size is in all cases 35 μ m × 23 μ m and the contrast has been optimized. The ellipses are included to aid the eye to distinguish different regions, as detailed in the text. Plots: (a5) and (b5) show horizontal cross-sections through the center (dashed line) and radial averaging (solid line) of the AFM images. The arrows indicate the radial positions of the ellipses in the above images.

Fig. 7
Fig. 7

Time-resolved reflectivity images of (a) fused silica and (b) sapphire at long delay times (see labels) after the irradiation with pump pulse lasers of 11.9 and 13.1   J / cm 2 , respectively. The frame size is in all cases 58 μ m × 37 μ m .

Fig. 8
Fig. 8

Time-resolved images of a sapphire surface upon irradiation with a 800 nm femtosecond laser pulse at (a1) 11.9 and (b1) 13.1   J / cm 2 , illuminated with a femtosecond probe pulse at two different probe wavelengths λ probe . (a1) λ probe = 800   nm at t = 600   ps ; (b1) λ probe = 400   nm at t = 410   ps . The bright granular appearance of the central region in (a1) is an artifact, caused by scatter of the 800 nm pump beam, which is suppressed in (b2) by spectral filtering. In both cases, only the surrounding region showing the fringe pattern is analyzed. The image size is 81 μ m × 58 μ m and the contrast has been optimized. (a2) and (b2) show the normalized vertical intensity profiles of (a1) and (b1), respectively.

Tables (1)

Tables Icon

Table 1 Material, Thermal, and Optical Properties of Fused Silica and Sapphire, along with the Threshold Values Determined in this Paper [48, 49]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = | k 1 k 2 k 1 + k 2 | 2 ,
d max = B m A m F 0 m 1 .

Metrics