Abstract

We develop an improved moment method to model soliton propagation in optical fibers. We account for the full Raman gain spectrum of the material and derive a system of coupled differential equations describing the evolution of five moments of the pulse, valid for arbitrary soliton durations. By comparing with the numerical solution of the generalized nonlinear Schrödinger equation, the improved moment method is shown to accurately represent soliton self-frequency shift under complex dispersion, nonlinearity, and Raman gain spectra. Numerical examples are presented for a dispersion-shifted fused silica fiber and a non-uniform ZBLAN fluoride fiber taper. The latter demonstrates an enhanced soliton self-frequency shift through axial dispersion and nonlinearity engineering along the taper length.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription