Abstract

The performance of vertical cavity surface emitting lasers can be enhanced, while simplifying the fabrication process, by adopting a hybrid design using a photonic-crystal (PhC) top mirror. In this paper, we analyze the performance of photonic-crystal surface emitting lasers (PCSELs) by varying the number of periods in the PhC mirror and estimating its reflectivity and lateral radiation losses. We consider three types of PhC mirrors: a simply periodic structure, a structure with a constant period but a variable filling factor (FF), and a structure with a constant FF but a variable period. We show that lateral losses can pose a serious limitation on the minimum size required to achieve an efficient PCSEL operation. We also show that our special structure can convert vertically emitted light into an in-plane light that propagates in the same plane as the PhC mirror creating the possibility of coupling vertically emitted light into optical waveguides. © 2010 Optical Society of America

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
    [CrossRef]
  2. A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
    [CrossRef]
  3. G. Steinle, H. Riechert, and A. Y. Egorov, “Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and cw output power exceeding 500 μW at room temperature,” Electron. Lett. 37, 93-95 (2001).
    [CrossRef]
  4. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283-295 (1993).
    [CrossRef]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  6. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
    [CrossRef]
  7. V. S. Amaratunga, H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, “Photonic crystal phase detector,” J. Opt. Soc. Am. B 25, 1532-1536 (2008).
    [CrossRef]
  8. K. Liu, X. D. Yuan, W. M. Ye, and C. Zeng, “Air waveguide in a hybrid 1D and 2D photonic crystal hetero-structure,” J. Opt. Soc. Am. B 282, 4445-4448 (2009).
  9. W. Jiang and R. T. Chen, “Multichannel optical add-drop process in symmetrical waveguide-resonator systems,” Phys. Rev. Lett. 91, 213901 (2003).
    [CrossRef] [PubMed]
  10. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
    [CrossRef]
  11. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
    [CrossRef]
  12. R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
    [CrossRef]
  13. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
    [CrossRef] [PubMed]
  14. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
    [CrossRef]
  15. S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
    [CrossRef]
  16. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
    [CrossRef]
  17. V. S. Amaratunga, H. Hattori, M. Premaratne, H. Tan, and C. Jagadish, “Directional optically pumped laterally coupled DFB lasers with circular mirrors,” J. Lightwave Technol. 27, 1425-1433 (2009).
    [CrossRef]
  18. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423-1431 (1995).
    [CrossRef]
  19. J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 139-142 (1994).
    [CrossRef]
  20. B. Klein, L. F. Register, M. Grupen, and K. Hess, “Numerical simulation of vertical cavity surface emitting lasers,” Opt. Express 2, 163-168 (1998).
    [CrossRef] [PubMed]
  21. A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
    [CrossRef]
  22. R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Tech. 31, 289-294 (1983).
    [CrossRef]
  23. M. Jungo, D. Erni, and W. Baechtold, “Alternative formulation of carrier transport in spatially-dependent laser rate equations,” Opt. Quantum Electron. 36, 881-891 (2004).
    [CrossRef]
  24. Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944-954 (1999).
    [CrossRef]
  25. R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
    [CrossRef]
  26. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton U. Press, 1995).
  27. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17, 2050-2057 (1999).
    [CrossRef]
  28. S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
    [CrossRef]
  29. J. M. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface emitting resonances in photonic crystals,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 442-447 (2001).
    [CrossRef] [PubMed]
  30. R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
    [CrossRef]
  31. S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
    [CrossRef] [PubMed]
  32. K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997).
    [CrossRef]
  33. S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
    [CrossRef]
  34. “Fullwave 4.0 RSOFT design group,” http://www.rsoftdesign.com (1999).
  35. “Bandsolve 2.0 RSOFT design group,” http://www.rsoftdesign.com (1999).
  36. X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
    [CrossRef]
  37. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005).
    [CrossRef] [PubMed]
  38. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005).
    [CrossRef] [PubMed]
  39. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210-214 (2005).
    [CrossRef]
  40. C. J. Matthews and R. Seviour, “Effects of disorder on the frequency and field of photonic-crystal cavity resonators,” Appl. Phys. B 94, 381-388 (2009).
    [CrossRef]
  41. M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model,” IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
    [CrossRef]
  42. G. Sialm, D. Lenz, D. Erni, G.-L. Bona, C. Kromer, M. Jungo, T. Morf, F. Ellinger, and H. Jackel, “Comparison of simulation and measurement of dynamic fiber-coupling effects for high-speed multimode VCSELs,” J. Lightwave Technol. 23, 2318-2330 (2005).
    [CrossRef]
  43. J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437-439 (1997).
    [CrossRef]
  44. J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131-2139 (1999).
    [CrossRef]
  45. S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996).
    [CrossRef]
  46. C. Wilsen, H. Temkin, and L. A. Coldren, Vertical Cavity Surface-Emitting Lasers, 1st ed. (Cambridge Univ. Press, 1999).
  47. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1st ed. (Wiley, 1995).
  48. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514-524 (1992).
    [CrossRef]
  49. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers, 1st ed. (Wiley, 2003).
    [CrossRef]
  50. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford Univ. Press, 2005).

2009

K. Liu, X. D. Yuan, W. M. Ye, and C. Zeng, “Air waveguide in a hybrid 1D and 2D photonic crystal hetero-structure,” J. Opt. Soc. Am. B 282, 4445-4448 (2009).

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

C. J. Matthews and R. Seviour, “Effects of disorder on the frequency and field of photonic-crystal cavity resonators,” Appl. Phys. B 94, 381-388 (2009).
[CrossRef]

V. S. Amaratunga, H. Hattori, M. Premaratne, H. Tan, and C. Jagadish, “Directional optically pumped laterally coupled DFB lasers with circular mirrors,” J. Lightwave Technol. 27, 1425-1433 (2009).
[CrossRef]

2008

2007

S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
[CrossRef]

2006

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
[CrossRef] [PubMed]

2005

2004

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “Alternative formulation of carrier transport in spatially-dependent laser rate equations,” Opt. Quantum Electron. 36, 881-891 (2004).
[CrossRef]

2003

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

W. Jiang and R. T. Chen, “Multichannel optical add-drop process in symmetrical waveguide-resonator systems,” Phys. Rev. Lett. 91, 213901 (2003).
[CrossRef] [PubMed]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
[CrossRef] [PubMed]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model,” IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

2001

J. M. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface emitting resonances in photonic crystals,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 442-447 (2001).
[CrossRef] [PubMed]

G. Steinle, H. Riechert, and A. Y. Egorov, “Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and cw output power exceeding 500 μW at room temperature,” Electron. Lett. 37, 93-95 (2001).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

2000

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

1999

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944-954 (1999).
[CrossRef]

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17, 2050-2057 (1999).
[CrossRef]

J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131-2139 (1999).
[CrossRef]

1998

B. Klein, L. F. Register, M. Grupen, and K. Hess, “Numerical simulation of vertical cavity surface emitting lasers,” Opt. Express 2, 163-168 (1998).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

1997

K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997).
[CrossRef]

J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437-439 (1997).
[CrossRef]

1996

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996).
[CrossRef]

S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
[CrossRef]

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
[CrossRef]

A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
[CrossRef]

1995

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

1994

J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 139-142 (1994).
[CrossRef]

1993

1992

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514-524 (1992).
[CrossRef]

1991

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

1983

R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Tech. 31, 289-294 (1983).
[CrossRef]

Amaratunga, V. S.

André, J.

K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997).
[CrossRef]

Astratov, V. N.

Babic, D. I.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514-524 (1992).
[CrossRef]

Baechtold, W.

M. Jungo, D. Erni, and W. Baechtold, “Alternative formulation of carrier transport in spatially-dependent laser rate equations,” Opt. Quantum Electron. 36, 881-891 (2004).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model,” IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

Bakhir, B. B.

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Bakir, B. B.

S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
[CrossRef]

S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
[CrossRef] [PubMed]

Barbosa, C. L.

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005).
[CrossRef] [PubMed]

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210-214 (2005).
[CrossRef]

Benyattou, T.

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Bicknell, R.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Birkbeck, A.

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

Blondeau, R.

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Bona, G. -L.

Boutami, S.

S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
[CrossRef]

S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
[CrossRef] [PubMed]

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Campbell, J. C.

S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
[CrossRef]

Cazo, R. M.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210-214 (2005).
[CrossRef]

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005).
[CrossRef] [PubMed]

Chan, Y. C.

A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Chelakara, R. V.

S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
[CrossRef]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Chen, R. T.

W. Jiang and R. T. Chen, “Multichannel optical add-drop process in symmetrical waveguide-resonator systems,” Phys. Rev. Lett. 91, 213901 (2003).
[CrossRef] [PubMed]

Chitica, N.

K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997).
[CrossRef]

Chutinan, A.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Coldren, L. A.

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical Cavity Surface-Emitting Lasers, 1st ed. (Cambridge Univ. Press, 1999).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1st ed. (Wiley, 1995).

Corzine, S. W.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514-524 (1992).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1st ed. (Wiley, 1995).

Culshaw, I. S.

Dantec, R. L.

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Dellunde, J.

Dentai, A. G.

S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
[CrossRef]

Dupuis, R. D.

S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
[CrossRef]

Egorov, A. Y.

G. Steinle, H. Riechert, and A. Y. Egorov, “Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and cw output power exceeding 500 μW at room temperature,” Electron. Lett. 37, 93-95 (2001).
[CrossRef]

Ellinger, F.

Erni, D.

G. Sialm, D. Lenz, D. Erni, G.-L. Bona, C. Kromer, M. Jungo, T. Morf, F. Ellinger, and H. Jackel, “Comparison of simulation and measurement of dynamic fiber-coupling effects for high-speed multimode VCSELs,” J. Lightwave Technol. 23, 2318-2330 (2005).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “Alternative formulation of carrier transport in spatially-dependent laser rate equations,” Opt. Quantum Electron. 36, 881-891 (2004).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model,” IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

Esener, S.

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Flynn, R.

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

Garrigues, M.

S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
[CrossRef] [PubMed]

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Gross, M.

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

Grupen, M.

Guillot, G.

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Gurney, P. C. R.

A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Hattori, H.

Hattori, H. T.

V. S. Amaratunga, H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, “Photonic crystal phase detector,” J. Opt. Soc. Am. B 25, 1532-1536 (2008).
[CrossRef]

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005).
[CrossRef] [PubMed]

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210-214 (2005).
[CrossRef]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005).
[CrossRef] [PubMed]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
[CrossRef] [PubMed]

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Hess, K.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Imada, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Jackel, H.

Jagadish, C.

Jiang, W.

W. Jiang and R. T. Chen, “Multichannel optical add-drop process in symmetrical waveguide-resonator systems,” Phys. Rev. Lett. 91, 213901 (2003).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton U. Press, 1995).

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Jungo, M.

G. Sialm, D. Lenz, D. Erni, G.-L. Bona, C. Kromer, M. Jungo, T. Morf, F. Ellinger, and H. Jackel, “Comparison of simulation and measurement of dynamic fiber-coupling effects for high-speed multimode VCSELs,” J. Lightwave Technol. 23, 2318-2330 (2005).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “Alternative formulation of carrier transport in spatially-dependent laser rate equations,” Opt. Quantum Electron. 36, 881-891 (2004).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model,” IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

King, L.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Klehr, A.

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
[CrossRef]

Klein, B.

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Kornilovitch, P.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Krauss, T. F.

Kromer, C.

Law, J. Y.

J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437-439 (1997).
[CrossRef]

Leclercq, J. L.

S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
[CrossRef]

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
[CrossRef] [PubMed]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Leclercq, J. -L.

Legratiet, L.

Lehmen, A. C. V.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Lenz, D.

Lerner, S.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Letartre, X.

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005).
[CrossRef] [PubMed]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
[CrossRef] [PubMed]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

Li, E. H.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996).
[CrossRef]

Liu, K.

K. Liu, X. D. Yuan, W. M. Ye, and C. Zeng, “Air waveguide in a hybrid 1D and 2D photonic crystal hetero-structure,” J. Opt. Soc. Am. B 282, 4445-4448 (2009).

Lowery, A. J.

A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Matthews, C. J.

C. J. Matthews and R. Seviour, “Effects of disorder on the frequency and field of photonic-crystal cavity resonators,” Appl. Phys. B 94, 381-388 (2009).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton U. Press, 1995).

Meyer, N.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Mochizuki, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Monat, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Morf, T.

Mouette, J.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

Mueller, R.

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
[CrossRef]

Murtaza, S. S.

S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
[CrossRef]

Nguyen, L. V. T.

A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
[CrossRef]

Noda, S.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Orenstein, M.

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944-954 (1999).
[CrossRef]

Otis, C. E.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Ozkan, M.

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

Pesquera, L.

Piprek, J.

J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 139-142 (1994).
[CrossRef]

Pope, D. J.

R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Tech. 31, 289-294 (1983).
[CrossRef]

Pottage, J. M.

J. M. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface emitting resonances in photonic crystals,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 442-447 (2001).
[CrossRef] [PubMed]

Premaratne, M.

Rapp, S.

K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997).
[CrossRef]

Register, L. F.

Regreny, P.

S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
[CrossRef]

Riechert, H.

G. Steinle, H. Riechert, and A. Y. Egorov, “Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and cw output power exceeding 500 μW at room temperature,” Electron. Lett. 37, 93-95 (2001).
[CrossRef]

Rojo-Romeo, P.

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005).
[CrossRef] [PubMed]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
[CrossRef] [PubMed]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

Rondi, D.

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Rue, R. M. D. L.

Russell, P. S. J.

J. M. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface emitting resonances in photonic crystals,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 442-447 (2001).
[CrossRef] [PubMed]

Sagnes, I.

Sarma, J.

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

Satuby, Y.

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944-954 (1999).
[CrossRef]

Schneider, V. M.

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005).
[CrossRef] [PubMed]

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210-214 (2005).
[CrossRef]

Seals, L.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Seassal, C.

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
[CrossRef] [PubMed]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

Seviour, R.

C. J. Matthews and R. Seviour, “Effects of disorder on the frequency and field of photonic-crystal cavity resonators,” Appl. Phys. B 94, 381-388 (2009).
[CrossRef]

Shore, K. A.

J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131-2139 (1999).
[CrossRef]

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

Shum, P.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996).
[CrossRef]

Sialm, G.

Silvestre, E.

J. M. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface emitting resonances in photonic crystals,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 442-447 (2001).
[CrossRef] [PubMed]

Skolnick, M. S.

Song, D.

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

Spisser, A.

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Steinle, G.

G. Steinle, H. Riechert, and A. Y. Egorov, “Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and cw output power exceeding 500 μW at room temperature,” Electron. Lett. 37, 93-95 (2001).
[CrossRef]

Stevenson, R. M.

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Strassner, M.

Streubel, K.

K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997).
[CrossRef]

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Sztefka, G.

J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 139-142 (1994).
[CrossRef]

Tan, H.

Tan, H. H.

Temkin, H.

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical Cavity Surface-Emitting Lasers, 1st ed. (Cambridge Univ. Press, 1999).

Touraille, E.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Tucker, R. S.

R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Tech. 31, 289-294 (1983).
[CrossRef]

Valle, A.

J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131-2139 (1999).
[CrossRef]

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

Viktorovitch, P.

S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
[CrossRef]

S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006).
[CrossRef] [PubMed]

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005).
[CrossRef] [PubMed]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003).
[CrossRef] [PubMed]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Wang, X. H.

A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
[CrossRef]

Wenzel, H.

J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 139-142 (1994).
[CrossRef]

Whittaker, D. M.

Wilsen, C.

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical Cavity Surface-Emitting Lasers, 1st ed. (Cambridge Univ. Press, 1999).

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton U. Press, 1995).

Wong, W. N.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996).
[CrossRef]

Yablonovitch, E.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford Univ. Press, 2005).

Ye, W. M.

K. Liu, X. D. Yuan, W. M. Ye, and C. Zeng, “Air waveguide in a hybrid 1D and 2D photonic crystal hetero-structure,” J. Opt. Soc. Am. B 282, 4445-4448 (2009).

Yeo, J. -S.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Yu, S. F.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996).
[CrossRef]

S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers, 1st ed. (Wiley, 2003).
[CrossRef]

Yuan, X. D.

K. Liu, X. D. Yuan, W. M. Ye, and C. Zeng, “Air waveguide in a hybrid 1D and 2D photonic crystal hetero-structure,” J. Opt. Soc. Am. B 282, 4445-4448 (2009).

Zeng, C.

K. Liu, X. D. Yuan, W. M. Ye, and C. Zeng, “Air waveguide in a hybrid 1D and 2D photonic crystal hetero-structure,” J. Opt. Soc. Am. B 282, 4445-4448 (2009).

Appl. Opt.

Appl. Phys. A

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Appl. Phys. B

C. J. Matthews and R. Seviour, “Effects of disorder on the frequency and field of photonic-crystal cavity resonators,” Appl. Phys. B 94, 381-388 (2009).
[CrossRef]

Appl. Phys. Lett.

S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Biomed. Microdevices

A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003).
[CrossRef]

Electron. Lett.

G. Steinle, H. Riechert, and A. Y. Egorov, “Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and cw output power exceeding 500 μW at room temperature,” Electron. Lett. 37, 93-95 (2001).
[CrossRef]

S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007).
[CrossRef]

IEEE J. Quantum Electron.

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944-954 (1999).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996).
[CrossRef]

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514-524 (1992).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model,” IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 139-142 (1994).
[CrossRef]

J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437-439 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Tech. 31, 289-294 (1983).
[CrossRef]

J. Lightwave Technol.

J. Mater. Sci. Eng.

K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997).
[CrossRef]

J. Mater. Sci. Mater. Electron.

R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999).
[CrossRef]

J. Opt. Soc. Am. A Opt. Image Sci. Vis.

J. M. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface emitting resonances in photonic crystals,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 442-447 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210-214 (2005).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

M. Jungo, D. Erni, and W. Baechtold, “Alternative formulation of carrier transport in spatially-dependent laser rate equations,” Opt. Quantum Electron. 36, 881-891 (2004).
[CrossRef]

Phys. Rev. B

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Phys. Rev. Lett.

W. Jiang and R. T. Chen, “Multichannel optical add-drop process in symmetrical waveguide-resonator systems,” Phys. Rev. Lett. 91, 213901 (2003).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Proc. SPIE

A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996).
[CrossRef]

Semicond. Sci. Technol.

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996).
[CrossRef]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton U. Press, 1995).

“Fullwave 4.0 RSOFT design group,” http://www.rsoftdesign.com (1999).

“Bandsolve 2.0 RSOFT design group,” http://www.rsoftdesign.com (1999).

S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers, 1st ed. (Wiley, 2003).
[CrossRef]

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford Univ. Press, 2005).

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical Cavity Surface-Emitting Lasers, 1st ed. (Cambridge Univ. Press, 1999).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1st ed. (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Cross section of 1D PhC mirrors with thickness h 1 and period Λ: (a) simple periodic PhC; (b) PhC with a constant lattice constant but variable FF, and (c) PhC with a constant FF but variable period.

Fig. 2
Fig. 2

PCSEL with a 1D PhC of type A as the top mirror. h 1 , h 2 , and h 3 are the thicknesses of PhC mirror, air spacing layer, and active layer, respectively.

Fig. 3
Fig. 3

Band diagram for type A PhC mirror. The mode that we intend to work with corresponds to the one with Λ / λ 0.8 at the Γ point.

Fig. 4
Fig. 4

(a) Reflectivity spectra for type A PhC mirror with 7 periods (dashed line) and 27 periods (solid line). (b) Peak reflectivity as a function of the number of periods (diamond markers) and lateral losses per side (%) (in the ± directions ) as a function of the number of periods (square markers).

Fig. 5
Fig. 5

(a) Reflectivity spectra for type B PhC mirror with decreasing FF and 7 periods (solid curve with square markers), 13 (solid curve), and 33 (dotted curve) periods. (b) Peak reflectivity as a function of the number of periods (diamond markers) and lateral losses per side (%) in each lateral direction as a function of the number of periods (square markers).

Fig. 6
Fig. 6

(a) Reflectivity spectra for type B PhC mirror with increasing FF and 7 periods (solid curve with square markers), 11 (solid curve), and 19 (dotted curve) periods. (b) Peak reflectivity as a function of the number of periods (diamond markers) and lateral losses in each lateral direction as a function of the number of periods (square markers).

Fig. 7
Fig. 7

Type B PhC mirrors with a period of (1320 nm) and 13 periods. The FF is changed from 45% to 85%. (a) τ g and τ c as a function of FF. (b) The wavelength range in which the reflectivity is higher than 98%.

Fig. 8
Fig. 8

(a) Reflectivity spectra for type C PhC mirror with increasing period and 7 periods (solid curve with square markers), 9 (solid curve), and 23 (dotted curve) periods. (b) Peak reflectivity as a function of the number of periods (diamond markers) and lateral losses in each direction as a function of the number of periods (square markers).

Fig. 9
Fig. 9

Field distribution ( E y ) of type C PhC mirrors with increasing period for the main resonant mode of the PCSEL device with 23 periods.

Fig. 10
Fig. 10

Reflectivity spectra for type C PhC mirrors with decreasing period. The solid curve with square markers, solid, and dashed curves represent structures with 7, 11, and 29 periods, respectively.

Fig. 11
Fig. 11

Type C PhC mirrors with decreasing period, peak reflectivity as a function of number of periods (diamond markers), and lateral losses in each direction as a function of the number of periods (square markers).

Fig. 12
Fig. 12

Type A PhC with FF = 65 % and 19 periods. This figure shows τ g and τ c as a function of the period.

Fig. 13
Fig. 13

Wavelength range in which the reflectivity is higher than 98% as a function of the period.

Fig. 14
Fig. 14

Reflectivity spectra for type B PhC mirror with increasing FF and 11 periods. Size of the PhC has a random Gaussian variation: solid curve with square markers represents 5% of maximum size variation and the solid curve represents maximum size variation of 15%.

Fig. 15
Fig. 15

Reflectivity spectra for type C PhC mirror (decreasing periods) with 11 periods. Size of the PhC has a random Gaussian variation: solid curve with square markers represents 5% of maximum size variation and the solid curve represents maximum size variation of 15%.

Fig. 16
Fig. 16

LI curve for same mode reflectivities. Top PhC mirror reflectivity is same for all the modes. Higher order modes are the lasing modes of the PCSEL (dashed and dotted curves).

Fig. 17
Fig. 17

LI curve for same mode reflectivity off the top PhC mirror. Due to mode competition close to the threshold current, higher order modes lase. All the modes start lasing at the same time since the same reflectivity for all the modes were considered for calculations.

Fig. 18
Fig. 18

LI curves for a PCSEL with type B PhC mirror with increasing FF and 13 periods. Different mode reflectivities for the PhC mirror considered are shown in Table 2. As observed experimentally, modes with the highest reflectivity start lasing initially. PhC mirror reflectivities for different modes were calculated using 2D FDTD simulations.

Fig. 19
Fig. 19

Power emitted in the vertical direction as a function of the injection current for type B structures: decreasing FF and 13 periods (solid curve) and increasing FF and 11 periods (dashed curve).

Fig. 20
Fig. 20

LI curves for different reflectivities of the top PhC mirror.

Fig. 21
Fig. 21

LI curves for different reflectivities of the top PhC mirror caused by fabrication tolerances ranging from 5% to 15%.

Tables (2)

Tables Icon

Table 1 Units and Values of Parameters Used in the Rate Equations

Tables Icon

Table 2 Optimum Reflectivity for Type B PhC mirror with Increasing FF and 13 Periods for Different Spatial Modes

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ p 2 2 π c ( 1 τ c + 1 τ g ) ,
τ g = D 2 4 p a ,
p a = c Λ 2 π d 2 ( Λ / λ ) d ( k x Λ / ( 2 π ) ) 2
N m ( ρ , φ , t ) t = η i j ( ρ , φ , t ) q n w d w N m ( ρ , φ , t ) τ N + D N ¯ 2 N ( ρ , φ , t ) v g m G m ( ρ , φ , t ) S m ( ρ , φ , t ) ,
S m ( ρ , φ , t ) t = ( v g Γ m G m ( ρ , φ , t ) 1 τ s ) S m ( ρ , φ , t ) + Γ m β m N m ( ρ , φ , t ) τ N .
G m ( ρ , φ , t ) = g 0 N m ( ρ , φ , t ) N tr 1 + ϵ m S m ( t ) | ψ ( ρ , φ , t ) | 2 .
1 τ S = v g ( α int + α mirror ) ,
α mirror = 1 2 h eff ln ( r Bragg r PhC ) .
V a = π D 2 4 h a ,
Γ z = h a h eff Γ m ,
P up = v g α mirror S h c 0 λ p V p F 1 ,

Metrics