Abstract

Polar orientation created by local photo-assisted poling (PAP) in copolymer films containing disperse red 1 was investigated by scanning probe microscopy. PAP was performed by a proximal biased probe, and the polar orientation was semiquantitatively measured by electrostatic force microscopy. The polar orientation behaves as a biexponential function of the period of PAP, which is dominated by fast angular hole burning and slow angular redistribution (AR). The characteristic time of AR decreases linearly with the poling bias. An expression has been developed to interpret the evolution of the Lorentzian-like shape of the poled spots. A poled spot with 150nm FWHM was demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain

Zouheir Sekkat, Jonathan Wood, Emil F. Aust, Wolfgang Knoll, Willi Volksen, and Robert D. Miller
J. Opt. Soc. Am. B 13(8) 1713-1724 (1996)

Light-induced orientation in azo-polyimide polymers 325 °C below the glass transition temperature

Zouheir Sekkat, Jonathan Wood, Wolfgang Knoll, Willi Volksen, Robert D. Miller, and André Knoesen
J. Opt. Soc. Am. B 14(4) 829-833 (1997)

Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes

Zouheir Sekkat, Philippe Prêtre, André Knoesen, Willie Volksen, Victor Y. Lee, Robert D. Miller, Jonathan Wood, and Wolfgang Knoll
J. Opt. Soc. Am. B 15(1) 401-413 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription