Abstract

Polar orientation created by local photo-assisted poling (PAP) in copolymer films containing disperse red 1 was investigated by scanning probe microscopy. PAP was performed by a proximal biased probe, and the polar orientation was semiquantitatively measured by electrostatic force microscopy. The polar orientation behaves as a biexponential function of the period of PAP, which is dominated by fast angular hole burning and slow angular redistribution (AR). The characteristic time of AR decreases linearly with the poling bias. An expression has been developed to interpret the evolution of the Lorentzian-like shape of the poled spots. A poled spot with 150nm FWHM was demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, “Light-induced orientation in azo-polyimide polymers 325°C below the glass transition temperature,” J. Opt. Soc. Am. B 14, 829-833 (1997).
    [CrossRef]
  2. N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
    [CrossRef]
  3. G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
    [CrossRef]
  4. M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004).
    [CrossRef]
  5. Z. Sekkat, “Photo-orientation by photoisomerization,” in Photoreactive Organic Thin Films, Z.Sekkat and W.Knoll eds. (Academic, Elsevier Science, 2002), Chap. 3.
    [CrossRef]
  6. S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 83, 505-509 (2005).
    [CrossRef]
  7. D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14, 9896-9900 (2006).
    [CrossRef] [PubMed]
  8. J. H. Lin, N. D. Lai, C. H. Chiu, C.-Y. Lin, G. W. Rieger, J. F. Young, F. S.-S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16, 7832-7841 (2008).
    [CrossRef] [PubMed]
  9. Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142-147 (1995).
    [CrossRef]
  10. H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation,” Appl. Phys. Lett. 91, 091911 (2007).
    [CrossRef]
  11. F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
    [CrossRef]
  12. D. Sarid, Scanning Force Microscope: with applications to electric, magnetic, and atomic forces (Oxford Univ. Press, 1991).
  13. M. J. Gordon and T. Baron, “Amplitude-mode electrostatic force microscopy in UHV: quantification of nanocrystal charge storage,” Phys. Rev. B 72, 165420 (2005).
    [CrossRef]
  14. Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855-1867 (1995).
    [CrossRef]
  15. G. Xu, X. Liu, J. Si, P. Ye, Z. Li, and Y. Shen, “Modified theory of photoinduced molecular polar alignment in azo polymers,” Opt. Lett. 25, 329-331 (2000).
    [CrossRef]
  16. C.-C. Hsu, J.-H. Lin, T.-H. Huang, and K. Harada, “Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films,” Appl. Phys. Lett. 82, 2440-2442 (2003).
    [CrossRef]
  17. M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

2008 (2)

2007 (1)

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation,” Appl. Phys. Lett. 91, 091911 (2007).
[CrossRef]

2006 (1)

2005 (2)

M. J. Gordon and T. Baron, “Amplitude-mode electrostatic force microscopy in UHV: quantification of nanocrystal charge storage,” Phys. Rev. B 72, 165420 (2005).
[CrossRef]

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 83, 505-509 (2005).
[CrossRef]

2004 (1)

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

2003 (2)

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
[CrossRef]

C.-C. Hsu, J.-H. Lin, T.-H. Huang, and K. Harada, “Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films,” Appl. Phys. Lett. 82, 2440-2442 (2003).
[CrossRef]

2000 (2)

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
[CrossRef]

G. Xu, X. Liu, J. Si, P. Ye, Z. Li, and Y. Shen, “Modified theory of photoinduced molecular polar alignment in azo polymers,” Opt. Lett. 25, 329-331 (2000).
[CrossRef]

1997 (1)

1995 (2)

Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855-1867 (1995).
[CrossRef]

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142-147 (1995).
[CrossRef]

1993 (1)

M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

Aust, E. F.

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142-147 (1995).
[CrossRef]

Baron, T.

M. J. Gordon and T. Baron, “Amplitude-mode electrostatic force microscopy in UHV: quantification of nanocrystal charge storage,” Phys. Rev. B 72, 165420 (2005).
[CrossRef]

Bidault, S.

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 83, 505-509 (2005).
[CrossRef]

Boeglin, A.

Brasselet, S.

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 83, 505-509 (2005).
[CrossRef]

Chien, F. S.-S.

Chiu, C. H.

Delaire, J. A.

M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

Dorkenoo, K. D.

Ducci, S.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
[CrossRef]

Dumont, M.

M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

Fort, A.

Fujita, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
[CrossRef]

Gindre, D.

Gordon, M. J.

M. J. Gordon and T. Baron, “Amplitude-mode electrostatic force microscopy in UHV: quantification of nanocrystal charge storage,” Phys. Rev. B 72, 165420 (2005).
[CrossRef]

Gouya, J.

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 83, 505-509 (2005).
[CrossRef]

Harada, K.

C.-C. Hsu, J.-H. Lin, T.-H. Huang, and K. Harada, “Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films,” Appl. Phys. Lett. 82, 2440-2442 (2003).
[CrossRef]

Hierle, R.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
[CrossRef]

Hirao, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
[CrossRef]

Hsu, C. C.

Hsu, C.-C.

C.-C. Hsu, J.-H. Lin, T.-H. Huang, and K. Harada, “Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films,” Appl. Phys. Lett. 82, 2440-2442 (2003).
[CrossRef]

Huang, T.-H.

C.-C. Hsu, J.-H. Lin, T.-H. Huang, and K. Harada, “Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films,” Appl. Phys. Lett. 82, 2440-2442 (2003).
[CrossRef]

Ishitobi, H.

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation,” Appl. Phys. Lett. 91, 091911 (2007).
[CrossRef]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Josse, D.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
[CrossRef]

Kang, C.-S.

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142-147 (1995).
[CrossRef]

Kawata, S.

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation,” Appl. Phys. Lett. 91, 091911 (2007).
[CrossRef]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Kitaoka, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
[CrossRef]

Knoesen, A.

Knoll, W.

Lai, N. D.

Li, Z.

Lin, C. Y.

F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
[CrossRef]

Lin, C.-Y.

Lin, J. H.

Lin, J.-H.

C.-C. Hsu, J.-H. Lin, T.-H. Huang, and K. Harada, “Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films,” Appl. Phys. Lett. 82, 2440-2442 (2003).
[CrossRef]

Liu, X.

Loucif-Saibi, R.

M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

Maeda, M.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Mager, L.

Martin, G.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
[CrossRef]

Matsuoka, N.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
[CrossRef]

Miller, R. D.

Nakatani, K.

M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

Rieger, G. W.

Sarid, D.

D. Sarid, Scanning Force Microscope: with applications to electric, magnetic, and atomic forces (Oxford Univ. Press, 1991).

Sekkat, Z.

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation,” Appl. Phys. Lett. 91, 091911 (2007).
[CrossRef]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, “Light-induced orientation in azo-polyimide polymers 325°C below the glass transition temperature,” J. Opt. Soc. Am. B 14, 829-833 (1997).
[CrossRef]

Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855-1867 (1995).
[CrossRef]

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142-147 (1995).
[CrossRef]

M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

Z. Sekkat, “Photo-orientation by photoisomerization,” in Photoreactive Organic Thin Films, Z.Sekkat and W.Knoll eds. (Academic, Elsevier Science, 2002), Chap. 3.
[CrossRef]

Shen, Y.

Si, J.

G. Xu, X. Liu, J. Si, P. Ye, Z. Li, and Y. Shen, “Modified theory of photoinduced molecular polar alignment in azo polymers,” Opt. Lett. 25, 329-331 (2000).
[CrossRef]

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
[CrossRef]

Tanabe, M.

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation,” Appl. Phys. Lett. 91, 091911 (2007).
[CrossRef]

Volksen, W.

Wegner, G.

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142-147 (1995).
[CrossRef]

Wood, J.

Xu, G.

Ye, P.

Young, J. F.

Zyss, J.

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 83, 505-509 (2005).
[CrossRef]

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasi-phase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086-1088 (2003).
[CrossRef]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation,” Appl. Phys. Lett. 91, 091911 (2007).
[CrossRef]

C.-C. Hsu, J.-H. Lin, T.-H. Huang, and K. Harada, “Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films,” Appl. Phys. Lett. 82, 2440-2442 (2003).
[CrossRef]

Chem. Mater. (1)

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142-147 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
[CrossRef]

Nonlinear Opt. (1)

M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization, photo-induced orientation and orientational relaxation of azo dyes in polymeric films,” Nonlinear Opt. 5, 395 (1993).

Opt. Commun. (1)

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185, 467-472 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

M. J. Gordon and T. Baron, “Amplitude-mode electrostatic force microscopy in UHV: quantification of nanocrystal charge storage,” Phys. Rev. B 72, 165420 (2005).
[CrossRef]

Other (2)

D. Sarid, Scanning Force Microscope: with applications to electric, magnetic, and atomic forces (Oxford Univ. Press, 1991).

Z. Sekkat, “Photo-orientation by photoisomerization,” in Photoreactive Organic Thin Films, Z.Sekkat and W.Knoll eds. (Academic, Elsevier Science, 2002), Chap. 3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Phase shift ( Δ ϕ ) of an oscillating cantilever as a function of the bias.

Fig. 2
Fig. 2

(a) and (b) Topographic and EFM images of a poled spot induced by local PAP on a DR1-PMMA copolymer film. (c) The profile of the EFM signal along the dashed line in (b).

Fig. 3
Fig. 3

(a) Peak of the polarization ( P p ) versus the period of local PAP ( t ) under various laser powers. (b) Plot of the characteristic time τ 1 as a function of laser power ( P L ) .

Fig. 4
Fig. 4

(a) P p versus t under various poling biases. (b) Plot of the characteristic time τ 2 as a function of the bias.

Fig. 5
Fig. 5

Plot of the saturated polarization ( P 0 ) versus the poling bias.

Fig. 6
Fig. 6

Evolution of the polarization profile P ( ρ ) simulated by Eq. (4).

Fig. 7
Fig. 7

Evolution of P p and FWHM of a poled spot created by 3 V bias and 150 μ W laser, along with the FWHM predicted by Eq. (4). The FWHM of P ( ρ ) in Fig. 6 is also shown (dashed curve).

Fig. 8
Fig. 8

(a) and (b) Topographic and EFM images of a poled spot. (c) Profile of EFM signal along the center of the spot in (b) to show its FWHM (150 nm).

Tables (2)

Tables Icon

Table 1 Values of the Fitted Parameters in Eq. (1) under Various Laser Powers

Tables Icon

Table 2 Values of the Fitted Parameters in Eq. (1) under Various Biases

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P p ( t ) = P 0 [ 1 a 1 exp ( t τ 1 ) a 2 exp ( t τ 2 ) ] ,
τ 2 = τ D c β | V | ,
P p ( V , t ) = P 0 ( V ) [ 1 a 1 exp ( t τ 1 ) a 2 exp ( t τ D c β | V | ) ] .
P ( ρ , V , t ) = P 0 ( V , ρ ) [ 1 a 1 exp ( t τ 1 ) a 2 exp ( t τ D c β | V | L ( ρ , σ ) ) ] ,
P ( ρ , V , t ) = P 0 ( V , ρ ) [ a 1 ( 1 exp ( t τ 1 ) ) ] .
P ( ρ , V , t ) = P 0 ( V , ρ ) [ 1 a 2 exp ( t τ D c β | V | L ( ρ , σ ) ) ] .
P ( ρ , V , t τ 2 ) P 0 ( V , ρ ) ,

Metrics