Abstract

The surface plasmons (SPs) capability to affect the field localization within a Bragg structure is discussed in this paper. The effects induced by the presence of a silver layer on the formation of a resonant mode are analyzed as well, showing that SPs do actually aid the formation of an enhanced resonant mode, which is not able to localize when SPs are not well supported by the metal. The numerical analysis highlights the dramatic ability of a SP to localize light at certain wavelengths, even though the mechanism is affected by losses, which have been estimated replacing silver with a perfectly electric conductor layer.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, 1988).
  2. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting-diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
    [CrossRef]
  3. P. Robson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 376-386 (2002).
  4. M. D. Harries and H. D. Summers, “Directional control of light-emitting diode emission via a sub-wavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197-2199 (2006).
    [CrossRef]
  5. L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
    [CrossRef]
  6. M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant sub-wavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301-307 (2009).
    [CrossRef]
  7. M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.
  8. M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
    [CrossRef]
  9. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garc'ıa de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  10. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  11. E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628-1630 (1996).
    [CrossRef] [PubMed]
  12. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  13. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
    [CrossRef]
  15. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
    [CrossRef]
  16. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106-6121 (2004).
    [CrossRef] [PubMed]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  18. A. D'Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Numerical modelling of photonic band gap waveguiding structures,” in Recent Research Developments in Optics, S.G.Pandalai, ed. (Research Signpost, 2002), Vol. 2, Part I, pp. 101-130.
  19. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1995).
  20. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  21. V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.
  22. V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

2009

2008

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

2007

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

2006

M. D. Harries and H. D. Summers, “Directional control of light-emitting diode emission via a sub-wavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197-2199 (2006).
[CrossRef]

2005

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garc'ıa de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

2004

2002

P. Robson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 376-386 (2002).

2000

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting-diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

1996

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garc'ıa de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Akozbek, N.

M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant sub-wavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301-307 (2009).
[CrossRef]

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Barnes, W. L.

P. Robson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 376-386 (2002).

Biswas, R.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Bloemer, M. J.

M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant sub-wavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301-307 (2009).
[CrossRef]

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

Botet, R.

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garc'ıa de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Buncick, M.

Calò, G.

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Chang, Y. C.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Chen, Y. C.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Daly, J.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

de Ceglia, D.

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

De Sario, M.

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

A. D'Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Numerical modelling of photonic band gap waveguiding structures,” in Recent Research Developments in Optics, S.G.Pandalai, ed. (Research Signpost, 2002), Vol. 2, Part I, pp. 101-130.

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

Ding, C. G.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

D'Orazio, A.

M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant sub-wavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301-307 (2009).
[CrossRef]

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

A. D'Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Numerical modelling of photonic band gap waveguiding structures,” in Recent Research Developments in Optics, S.G.Pandalai, ed. (Research Signpost, 2002), Vol. 2, Part I, pp. 101-130.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Eisler, H. -J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Garc'ia de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garc'ıa de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Greenwald, A.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Harries, M. D.

M. D. Harries and H. D. Summers, “Directional control of light-emitting diode emission via a sub-wavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197-2199 (2006).
[CrossRef]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Huang, K. T.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Johnson, E.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Lee, C. K.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Liaw, J. W.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Lin, D. Z.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Liu, J. M.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting-diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Mansuripur, M.

Markel, V. A.

Marrocco, V.

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

McNeal, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Moloney, J. V.

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Petruzzelli, V.

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

A. D'Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Numerical modelling of photonic band gap waveguiding structures,” in Recent Research Developments in Optics, S.G.Pandalai, ed. (Research Signpost, 2002), Vol. 2, Part I, pp. 101-130.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Poliakov, E. Y.

Pralle, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Prudenzano, F.

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

A. D'Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Numerical modelling of photonic band gap waveguiding structures,” in Recent Research Developments in Optics, S.G.Pandalai, ed. (Research Signpost, 2002), Vol. 2, Part I, pp. 101-130.

V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

Puscasu, I.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer, 1988).

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garc'ıa de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Robson, P.

P. Robson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 376-386 (2002).

Sage, I.

P. Robson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 376-386 (2002).

Scalora, M.

M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant sub-wavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301-307 (2009).
[CrossRef]

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Scherer, A.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting-diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Shalaev, V. M.

Summers, H. D.

M. D. Harries and H. D. Summers, “Directional control of light-emitting diode emission via a sub-wavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197-2199 (2006).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1995).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Vincenti, M. A.

M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant sub-wavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301-307 (2009).
[CrossRef]

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

Vuckovic, J.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting-diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Wasey, J. A. E.

P. Robson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 376-386 (2002).

Wolff, A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Xie, Y.

Yeh, C. S.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Yeh, J. T.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Yu, L. B.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Zakharian, A. R.

Appl. Phys. Lett.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting-diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. Robson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 376-386 (2002).

IEEE Photon. Technol. Lett.

M. D. Harries and H. D. Summers, “Directional control of light-emitting diode emission via a sub-wavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197-2199 (2006).
[CrossRef]

J. Appl. Phys.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystal,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

J. Nanophotonics

M. A. Vincenti, V. Petruzzelli, F. Prudenzano, A. D'Orazio, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: Applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garc'ıa de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a sub-wavelength slit,” Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

Phys. Rev. Lett.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Other

M. A. Vincenti, D. de Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Scalora, and A. D'Orazio, “Surface plasmon generation in a sub-wavelength slit in metal: A palladium-based H2 leak detection sensor,” in Proceedings of 14th European Conference on Integrated Optics (2008), paper ThP 18.

H. Raether, Surface Plasmons (Springer, 1988).

A. D'Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Numerical modelling of photonic band gap waveguiding structures,” in Recent Research Developments in Optics, S.G.Pandalai, ed. (Research Signpost, 2002), Vol. 2, Part I, pp. 101-130.

A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1995).

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

V. Marrocco, M. A. Vincenti, G. Calò, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Field enhancement in a photonic band gap cavity assisted by metal grooves,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

V. Marrocco, M. A. Vincenti, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, “Plasmons on metal layers embedded in dielectric PBG cavity,” ICTON 2009--11th Conference on Transparent Optical Network, Island of Sao Miguel, Azores (Pt), June 28-July 2 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the complete structure.

Fig. 2
Fig. 2

Variation in the bandgap (transmission) as d c is increased.

Fig. 3
Fig. 3

(a) Normalized intensity of the resonant peak at λ 0 = 500   nm as d c thickness is varied. (b) Time-averaged H z 2 field at λ 0 = 500   nm for d c = 240   nm . (c) Time-averaged H z 2 field at λ 0 = 520   nm for d c = 240   nm .

Fig. 4
Fig. 4

(a) Normalized intensity of the resonant peak at λ 0 = 500   nm as d c thickness is varied when an ideal and lossless metal (PEC) is considered. (b) Time-averaged H z 2 field at λ 0 = 500   nm for d c = 260   nm in the presence of PEC.

Fig. 5
Fig. 5

(a) Normalized intensity of the energy stored in the cavity at λ 0 = 500   nm for d c = 240   nm when different silver layer thicknesses are considered: 40   nm < t m < 100   nm ; (b) normalized intensity of the energy absorbed by the metal (black curve) and transmitted through the metal in the substrate (red curve); the inset is the time-averaged H z 2 field at λ 0 = 500   nm for d c = 240   nm and t m = 40   nm .

Metrics