Abstract

A scheme for stable shot-to-shot few-cycle pulse production has been realized by launching an initially collimated laser beam into a gas tube. We found that the optimum parameters for the sevenfold compression of 55fs, 5mJ, Ti:Sapphire laser pulses are the following: 0.80.9atm argon gas pressure and the registration aperture with a diameter of 300700μm. A technique for the efficient extraction of the self-compressed pulse from the desired position along the filament has been provided by moving the registration aperture along the tube. With this technique, pulses as short as 8fs were detected at a distance of 1m from the filament starting position, in agreement with numerical simulations performed using a 3D+time axially symmetric code.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nisoli, S. de Silvestri, O. Svelto, R. Szipöcz, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522-524 (1997).
    [CrossRef] [PubMed]
  2. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  3. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
    [CrossRef]
  4. S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express 16, 10684-10689 (2008).
    [CrossRef] [PubMed]
  5. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274-276 (2006).
    [CrossRef] [PubMed]
  6. C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
    [CrossRef]
  7. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, U. Keller, A. Couairon, M. Franco, and A. Mysyrowicz, “Spatiotemporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15, 5394-5404 (2007).
    [CrossRef] [PubMed]
  8. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
    [CrossRef]
  9. O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
    [CrossRef]
  10. A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
    [CrossRef]
  11. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
    [CrossRef]
  12. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 44, 47-189 (2007).
    [CrossRef]
  13. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
    [CrossRef]
  14. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205-228 (2009).
    [CrossRef]
  15. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30, 2657-2659 (2005).
    [CrossRef] [PubMed]
  16. V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69-75 (2003).
    [CrossRef]
  17. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999).
    [CrossRef]
  18. W. Liu, F. Theberge, E. Arévalo, J.-F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30, 2602-2604 (2005).
    [CrossRef] [PubMed]
  19. M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
    [CrossRef]
  20. G. Stibenz and G. Steinmeyer, “Optimizing spectral phase interferometry for direct electric-field reconstruction,” Rev. Sci. Instrum. 77, 073105 (2006).
    [CrossRef]
  21. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
    [CrossRef]
  22. M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
    [CrossRef]
  23. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
    [CrossRef]
  24. Critical power for self-focusing in argon was measured by P. T. Simard and S. L. Chin according to the technique published in the paper by W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750-5755 (2005).
    [CrossRef] [PubMed]
  25. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
    [CrossRef]
  26. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282 (1997).
    [CrossRef]
  27. N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001).
    [CrossRef]
  28. Yu. P. Raizer, Gas Discharge Physics (Springer-Verlag, 1991).
    [CrossRef]
  29. A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924-934 (1966).
  30. L. Berge, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
    [CrossRef] [PubMed]
  31. B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31, 2601-2603 (2006).
    [CrossRef] [PubMed]
  32. W. Liu and S. L. Chin, “Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation,” Phys. Rev. A 76, 013826 (2007).
    [CrossRef]
  33. W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
    [CrossRef]
  34. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B: Lasers Opt. 71, 877-879 (2000).
    [CrossRef]
  35. L. Berge and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100, 113902 (2008).
    [CrossRef] [PubMed]
  36. O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
    [CrossRef]

2009 (4)

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205-228 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

2008 (5)

L. Berge and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100, 113902 (2008).
[CrossRef] [PubMed]

L. Berge, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[CrossRef] [PubMed]

S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express 16, 10684-10689 (2008).
[CrossRef] [PubMed]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

2007 (4)

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, U. Keller, A. Couairon, M. Franco, and A. Mysyrowicz, “Spatiotemporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15, 5394-5404 (2007).
[CrossRef] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 44, 47-189 (2007).
[CrossRef]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
[CrossRef]

W. Liu and S. L. Chin, “Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation,” Phys. Rev. A 76, 013826 (2007).
[CrossRef]

2006 (6)

B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31, 2601-2603 (2006).
[CrossRef] [PubMed]

G. Stibenz and G. Steinmeyer, “Optimizing spectral phase interferometry for direct electric-field reconstruction,” Rev. Sci. Instrum. 77, 073105 (2006).
[CrossRef]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274-276 (2006).
[CrossRef] [PubMed]

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

2005 (4)

2004 (1)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
[CrossRef]

2003 (2)

V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69-75 (2003).
[CrossRef]

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
[CrossRef]

2001 (1)

N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001).
[CrossRef]

2000 (1)

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B: Lasers Opt. 71, 877-879 (2000).
[CrossRef]

1999 (2)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999).
[CrossRef]

1997 (3)

M. Nisoli, S. de Silvestri, O. Svelto, R. Szipöcz, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
[CrossRef]

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924-934 (1966).

Akozbek, N.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001).
[CrossRef]

Arévalo, E.

Becker, A.

W. Liu, F. Theberge, E. Arévalo, J.-F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30, 2602-2604 (2005).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

Berge, L.

L. Berge, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[CrossRef] [PubMed]

L. Berge and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100, 113902 (2008).
[CrossRef] [PubMed]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
[CrossRef]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Bernhardt, J.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Biegert, J.

Bohman, S.

Bowden, M. C.

N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

Buersing, H.

Chakraborty, H. S.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

Chin, S. L.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

W. Liu and S. L. Chin, “Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation,” Phys. Rev. A 76, 013826 (2007).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

Critical power for self-focusing in argon was measured by P. T. Simard and S. L. Chin according to the technique published in the paper by W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750-5755 (2005).
[CrossRef] [PubMed]

W. Liu, F. Theberge, E. Arévalo, J.-F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30, 2602-2604 (2005).
[CrossRef] [PubMed]

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
[CrossRef]

N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001).
[CrossRef]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B: Lasers Opt. 71, 877-879 (2000).
[CrossRef]

Couairon, A.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, U. Keller, A. Couairon, M. Franco, and A. Mysyrowicz, “Spatiotemporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15, 5394-5404 (2007).
[CrossRef] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 44, 47-189 (2007).
[CrossRef]

B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31, 2601-2603 (2006).
[CrossRef] [PubMed]

A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30, 2657-2659 (2005).
[CrossRef] [PubMed]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
[CrossRef]

de Silvestri, S.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

Eberle, B.

Ferencz, K.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

Franco, M.

Gaarde, M. B.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

Gallmann, L.

Golubtsov, I. S.

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
[CrossRef]

Gorgutsa, S. R.

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

Gravel, J.-F.

Guandalini, A.

Hauri, C. P.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
[CrossRef]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
[CrossRef]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
[CrossRef]

Holler, M.

Hosseini, S. A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

Ji, Z.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Jiang, Y.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Ju, J.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Kaku, M.

Kanai, T.

Kandidov, V. P.

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205-228 (2009).
[CrossRef]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69-75 (2003).
[CrossRef]

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
[CrossRef]

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
[CrossRef]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B: Lasers Opt. 71, 877-879 (2000).
[CrossRef]

Keller, U.

Kolesik, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999).
[CrossRef]

Koltun, A. A.

V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69-75 (2003).
[CrossRef]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
[CrossRef]

Kosareva, O.

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
[CrossRef]

Kosareva, O. G.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205-228 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69-75 (2003).
[CrossRef]

Krausz, F.

Krenz, M.

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

Kurilova, M. V.

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

Lederer, F.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Leng, Y.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Li, R.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Liang, X.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Liu, J.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Liu, W.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

W. Liu and S. L. Chin, “Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation,” Phys. Rev. A 76, 013826 (2007).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

W. Liu, F. Theberge, E. Arévalo, J.-F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30, 2602-2604 (2005).
[CrossRef] [PubMed]

Critical power for self-focusing in argon was measured by P. T. Simard and S. L. Chin according to the technique published in the paper by W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750-5755 (2005).
[CrossRef] [PubMed]

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
[CrossRef]

Lopez-Martens, R. B.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Lu, X.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Luo, Q.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
[CrossRef]

Mazhorova, A. V.

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

Merano, M.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Midorikawa, K.

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999).
[CrossRef]

Moloney, J. V.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999).
[CrossRef]

Mourou, G.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Mysyrowicz, A.

Nisoli, M.

Nurhuda, M.

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
[CrossRef]

Panov, N. A.

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924-934 (1966).

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924-934 (1966).

Prade, B.

Raizer, Yu. P.

Yu. P. Raizer, Gas Discharge Physics (Springer-Verlag, 1991).
[CrossRef]

Rey, G.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

Russell, P. St. J.

Sartania, S.

Sauerbrey, R.

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B: Lasers Opt. 71, 877-879 (2000).
[CrossRef]

Savel'ev, A. B.

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

Scalora, M.

N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001).
[CrossRef]

Schapper, F.

Schnürer, M.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Schroeder, H.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

Seiffer, D.

Sharifi, M.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Shlenov, S. A.

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205-228 (2009).
[CrossRef]

Skupin, S.

L. Berge, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[CrossRef] [PubMed]

L. Berge and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100, 113902 (2008).
[CrossRef] [PubMed]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
[CrossRef]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Sokollik, T.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Spielmann, C.

Steinmeyer, G.

L. Berge, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[CrossRef] [PubMed]

G. Stibenz and G. Steinmeyer, “Optimizing spectral phase interferometry for direct electric-field reconstruction,” Rev. Sci. Instrum. 77, 073105 (2006).
[CrossRef]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274-276 (2006).
[CrossRef] [PubMed]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Stibenz, G.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274-276 (2006).
[CrossRef] [PubMed]

G. Stibenz and G. Steinmeyer, “Optimizing spectral phase interferometry for direct electric-field reconstruction,” Rev. Sci. Instrum. 77, 073105 (2006).
[CrossRef]

Suda, A.

Svelto, O.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

Szipöcz, R.

Terent'ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924-934 (1966).

Theberge, F.

W. Liu, F. Theberge, E. Arévalo, J.-F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30, 2602-2604 (2005).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

Trisorio, A.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Uryupina, D. S.

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

Vasseur, O.

Volkov, R. V.

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

Wang, Z.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Wolf, J.-P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
[CrossRef]

Wright, E. M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999).
[CrossRef]

Xu, Z.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Yamaguchi, S.

Zaïr, A.

Zhavoronkov, N.

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274-276 (2006).
[CrossRef] [PubMed]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Appl. Phys. B: Lasers Opt. (3)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004).
[CrossRef]

O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008).
[CrossRef]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B: Lasers Opt. 71, 877-879 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Can. J. Phys. (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. (1)

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009).
[CrossRef]

Opt. Commun. (2)

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003).
[CrossRef]

N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Spectrosc. (1)

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009).
[CrossRef]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 44, 47-189 (2007).
[CrossRef]

Phys. Rev. A (2)

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008).
[CrossRef]

W. Liu and S. L. Chin, “Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation,” Phys. Rev. A 76, 013826 (2007).
[CrossRef]

Phys. Rev. E (1)

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999).
[CrossRef]

L. Berge, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[CrossRef] [PubMed]

L. Berge and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100, 113902 (2008).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
[CrossRef]

Quantum Electron. (3)

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205-228 (2009).
[CrossRef]

M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009).
[CrossRef]

V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69-75 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007).
[CrossRef]

Rev. Sci. Instrum. (2)

G. Stibenz and G. Steinmeyer, “Optimizing spectral phase interferometry for direct electric-field reconstruction,” Rev. Sci. Instrum. 77, 073105 (2006).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997).
[CrossRef]

Sov. Phys. JETP (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924-934 (1966).

Other (1)

Yu. P. Raizer, Gas Discharge Physics (Springer-Verlag, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the experimental setup.

Fig. 2
Fig. 2

Experimentally deduced (a) spectral and (b) temporal phases and amplitudes with 700 μ m aperture and (d) numerically simulated ones with 300 μ m at various argon pressures. Fig. 2c represents the retrieved PG FROG trace of the pulse from the Fig. 2a at the optimal argon gas pressure of 0.85 atm (10 equidistant levels are shown with thin lines).

Fig. 3
Fig. 3

(a) FWHM pulse duration registered after apertures of different sizes as the function of argon gas pressure. (b) The energy in 700 μ m aperture (left axis) and the ratio η between the energy contained in 100 μ m aperture and in 700 μ m aperture (right axis). All the data were measured at the distance of 2.5 m from the convex mirror.

Fig. 4
Fig. 4

Plasma distribution along the propagation direction at different pressures p in argon [initial energy 4.5 mJ , duration 55 fs (FWHM), diameter 1.3 mm (FWHM), collimated beam]. Vertical solid line shows the position of the self-compressed pulse “registration” in the simulations.

Fig. 5
Fig. 5

(a) Retrieved self-compressed pulse at argon pressure of 0.9 atm with 300 μ m aperture using PG FROG technique, (b) the corresponding temporal profile (full circles), and (c) the simulated power flowing through 100 μ m aperture at the same argon pressure. Dashed curve in (b) shows Gaussian fit with 8 fs FWHM.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 i k 0 ( A z + 1 v g A t ) = ( 1 i ω 0 t ) 1 Δ A ( k 0 k 2 A t 2 + n = 3 1 ( i n n ! ) | ( n ) k 2 ω n | ω 0 ( n ) A t n ) + 2 k 0 2 n 0 [ ( 1 i ω 0 t ) Δ n k + ( 1 i ω 0 t ) 1 Re ( Δ n p ) + i Im ( Δ n p ) ] A i k 0 α A .
Δ n k ( r , z , t ) = 0.5 n 2 | A | 2 ,
Re ( Δ n p ( r , z , t ) ) = ω p 2 ( r , z , t ) ( 2 n 0 ω 0 2 ) ,
ω p ( r , z , t ) = [ 4 π e 2 N e ( r , z , t ) m e ] 1 2 .
α ( r , z , t ) = ω 0 I m N e t .
A ( r , z = 0 , τ ) = A 0 exp ( τ 2 ( 2 τ 0 2 ) ) × exp ( r 2 ( 2 a 0 2 ) ) ,
I a v ( z , τ ) = 8 d 2 0 d 2 I ( r , z , τ ) r d r .

Metrics