Abstract

Results of studies in the influence of losses on the superresolution achievability are presented. The studies involve modeling and realization of superresolution devices. It is found that rigorous electrodynamic models that are not based on homogenization of composites can be effectively used in modeling devices with metamaterials. The possibilities to compensate losses in near-optic metamaterials by means of active inclusions or active medium are discussed and the active material design is presented. Alternatively, what we believe to be new designs are suggested for applications where losses are desirable.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lamb, “On group velocity,” Proc. London Math. Soc. S2-1, 473-479 (1904).
    [CrossRef]
  2. L. I. Mandelshtam, “Lectures given on February 26, 1940 and on May 5, 1944” in Complete Issue of Works (Izdatelstvo Trudov AN SSSR, 1950) (in Russian), Vol. 5.
  3. V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029-1044 (2006).
    [CrossRef]
  4. D. V. Sivuhin, “About the energy of electromagnetic field in dispersing media,” Opt. Spektrosk. 3, 308-312 (1957) (in Russian).
  5. V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  7. A. N. Lagarkov and V. N. Kissel, “Numerical and experimental investigation of the superresolution in a focusing system based on a plate of 'left-handed' material,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 157-160.
  8. A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
    [CrossRef] [PubMed]
  9. S. A. Schelkunoff and H. T. Friis, Antennas: Theory and Practice (John Wiley & Sons, 1952).
  10. A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).
  11. A. N. Lagarkov, L. V. Panina, A. K. Sarychev, and Y. R. Smychkovich, in MRS Spring Meeting (1990), paper S 9.3.
  12. A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.
  13. A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).
  14. A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318-6336 (1996).
    [CrossRef]
  15. A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
    [CrossRef]
  16. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161-163 (2003).
    [CrossRef]
  17. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]
  18. C. K. Ong and X. S. Rao, “Resolution enhancement of a left-handed material superlens,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 123-126.
  19. X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
    [CrossRef]
  20. V. N. Kissel and A. N. Lagarkov, “A study into the possibility of field focusing using 'left-handed' materials,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 145-148.
  21. A. N. Lagar'kov and V. N. Kisel', “Quality of focusing electromagnetic radiation by a plane-parallel slab with a negative index of refraction,” Dokl. Phys. 49, 5-10 (2004).
    [CrossRef]
  22. A. P. Vinogradov, D. P. Makhnovskii, and K. N. Rozanov, “Effective boundary layer in composite materials,” J. Commun. Technol. Electron. 44, 317-322 (1999).
  23. L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “The thickness dependence of resonance frequency in anisotropic composites with long conductive fibers,” Electromagnetics 25, 69-79 (2005).
    [CrossRef]
  24. V. N. Kissel and A. N. Lagarkov, “Superresolution in left-handed composite structures: from homogenization to a detailed electrodynamic description,” Phys. Rev. B 72, 085111 (2005).
    [CrossRef]
  25. A. N. Lagarkov and V. N. Kisel, “Metamaterials and superresolution: from homogenization to rigorous approach,” Physica B 394, 163-166 (2007).
    [CrossRef]
  26. T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
    [CrossRef]
  27. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
    [CrossRef]
  28. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
    [CrossRef]
  29. A. N. Lagarkov and V. N. Kisel, “Electrodynamic properties of simple bodies made of materials with negative permeability and negative permittivity,” Dokl. Phys. 46, 163-165 (2001).
    [CrossRef]
  30. V. N. Kisel and A. N. Lagarkov, “Electromagnetic wave scattering by the negative refraction index bodies,” Electromagnetic Waves and Electronic Systems 7, 62-65 (2002).
  31. K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer Academic, 1996).
    [CrossRef]
  32. V. N. Kisel and A. N. Lagarkov, “Near perfect absorption by a flat metamaterial plate,” Phys. Rev. E 76, 065601 (2007).
    [CrossRef]
  33. A. N. Lagarkov, V. N. Kisel, and V. N. Semenenko, “Wide-angle absorption by the use of a metamaterial plate,” Progress in Electromagnetics Research Letters 1, 35-44 (2008).
    [CrossRef]
  34. N. Engheta, “An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10-13 (2002).
    [CrossRef]
  35. S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
    [CrossRef]
  36. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).
  37. A. Alù, N. Engheta, A. Erontuk, and R. W. Ziolkowski, “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag. 49, 23-36 (2007).
    [CrossRef]
  38. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  39. A. Sarychev and V. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).
    [CrossRef]
  40. A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275-371 (2000).
    [CrossRef]
  41. V. Batygin and I. Toptygin, Problems in Electrodynamics (Academic, 1978).
  42. V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  43. V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
    [CrossRef]
  44. S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  45. A. Sarychev and V. Shalaev, “Magnetic resonance in metal nanoantennas,” in Complex Mediums V: Light and Complexity, M.McCall and G.Dewar, eds., Proc. SPIE 5508128-137 (2004).
  46. G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
    [CrossRef] [PubMed]
  47. G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892-894 (2006).
    [CrossRef] [PubMed]
  48. G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53-55 (2007).
    [CrossRef]
  49. T. Klar, A. Kildishev, V. Drachev, and V. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006).
    [CrossRef]
  50. V. M. Shalaev, Nat. Photonics 1, 41-48 (2007).
    [CrossRef]
  51. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
    [CrossRef] [PubMed]
  52. A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
    [CrossRef] [PubMed]
  53. A. Kildishev, V. Drachev, U. Chettiar, V. Shalaev, D. Werner, and D. Kwon, “Comment on 'Negative refractive index in artificial metamaterials',” Opt. Lett. 32, 1510-1511 (2007).
    [CrossRef] [PubMed]
  54. J. O. Dimmock, “Losses in left-handed materials,” Opt. Express 11, 2397-2402 (2003).
    [CrossRef] [PubMed]
  55. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]
  56. V. Podolskiy and E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]
  57. A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
    [CrossRef]
  58. A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” in Complex Photonic Media, G.Dewar, M.McCall, M.Noginov, and N.Zheludev, eds., Proc. SPIE 6320, 63200A (2006).
  59. A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
    [CrossRef]
  60. A. K. Sarychev, A. A. Pukhov, and G. Tartakovsky, “Metamaterial comprising plasmonic nanolasers,” in Progress in Electromagnetics Research Symposium (PIERS) (2007), pp. 95-98.
  61. D. Bergman and M. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  62. B. Kogan, V. Volkov, and S. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100-105 (1972).
  63. G. Plotz, H. Simon, and J. Tucciarone, “Enhanced total reflection with surface plasmons,” J. Opt. Soc. Am. 69, 419-421 (1979).
    [CrossRef]
  64. A. Sudarkin and P. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764-766 (1989).
  65. A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
    [CrossRef]
  66. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70, 155416 (2004).
    [CrossRef]
  67. S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
    [CrossRef]
  68. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
    [CrossRef] [PubMed]
  69. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548-8551 (2009).
    [CrossRef] [PubMed]
  70. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonicmetamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785-19798 (2008).
    [CrossRef] [PubMed]
  71. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104(R) (2009).
    [CrossRef]
  72. D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80, 153304 (2009).
    [CrossRef]

2009 (4)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548-8551 (2009).
[CrossRef] [PubMed]

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80, 153304 (2009).
[CrossRef]

2008 (3)

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonicmetamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785-19798 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

A. N. Lagarkov, V. N. Kisel, and V. N. Semenenko, “Wide-angle absorption by the use of a metamaterial plate,” Progress in Electromagnetics Research Letters 1, 35-44 (2008).
[CrossRef]

2007 (8)

V. N. Kisel and A. N. Lagarkov, “Near perfect absorption by a flat metamaterial plate,” Phys. Rev. E 76, 065601 (2007).
[CrossRef]

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
[CrossRef]

A. Alù, N. Engheta, A. Erontuk, and R. W. Ziolkowski, “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

A. N. Lagarkov and V. N. Kisel, “Metamaterials and superresolution: from homogenization to rigorous approach,” Physica B 394, 163-166 (2007).
[CrossRef]

A. Kildishev, V. Drachev, U. Chettiar, V. Shalaev, D. Werner, and D. Kwon, “Comment on 'Negative refractive index in artificial metamaterials',” Opt. Lett. 32, 1510-1511 (2007).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53-55 (2007).
[CrossRef]

V. M. Shalaev, Nat. Photonics 1, 41-48 (2007).
[CrossRef]

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[CrossRef]

2006 (6)

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[CrossRef]

T. Klar, A. Kildishev, V. Drachev, and V. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006).
[CrossRef]

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029-1044 (2006).
[CrossRef]

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892-894 (2006).
[CrossRef] [PubMed]

2005 (9)

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[CrossRef]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[CrossRef]

L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “The thickness dependence of resonance frequency in anisotropic composites with long conductive fibers,” Electromagnetics 25, 69-79 (2005).
[CrossRef]

V. N. Kissel and A. N. Lagarkov, “Superresolution in left-handed composite structures: from homogenization to a detailed electrodynamic description,” Phys. Rev. B 72, 085111 (2005).
[CrossRef]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

V. Podolskiy and E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

2004 (4)

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70, 155416 (2004).
[CrossRef]

T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
[CrossRef]

A. N. Lagar'kov and V. N. Kisel', “Quality of focusing electromagnetic radiation by a plane-parallel slab with a negative index of refraction,” Dokl. Phys. 49, 5-10 (2004).
[CrossRef]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

2003 (6)

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
[CrossRef]

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[CrossRef]

D. Bergman and M. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

J. O. Dimmock, “Losses in left-handed materials,” Opt. Express 11, 2397-2402 (2003).
[CrossRef] [PubMed]

2002 (2)

V. N. Kisel and A. N. Lagarkov, “Electromagnetic wave scattering by the negative refraction index bodies,” Electromagnetic Waves and Electronic Systems 7, 62-65 (2002).

N. Engheta, “An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10-13 (2002).
[CrossRef]

2001 (1)

A. N. Lagarkov and V. N. Kisel, “Electrodynamic properties of simple bodies made of materials with negative permeability and negative permittivity,” Dokl. Phys. 46, 163-165 (2001).
[CrossRef]

2000 (3)

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275-371 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

1999 (2)

A. P. Vinogradov, D. P. Makhnovskii, and K. N. Rozanov, “Effective boundary layer in composite materials,” J. Commun. Technol. Electron. 44, 317-322 (1999).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1997 (1)

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

1996 (1)

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318-6336 (1996).
[CrossRef]

1992 (1)

A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).

1989 (1)

A. Sudarkin and P. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764-766 (1989).

1979 (1)

1972 (1)

B. Kogan, V. Volkov, and S. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100-105 (1972).

1968 (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

1957 (1)

D. V. Sivuhin, “About the energy of electromagnetic field in dispersing media,” Opt. Spektrosk. 3, 308-312 (1957) (in Russian).

1904 (1)

H. Lamb, “On group velocity,” Proc. London Math. Soc. S2-1, 473-479 (1904).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029-1044 (2006).
[CrossRef]

Alù, A.

A. Alù, N. Engheta, A. Erontuk, and R. W. Ziolkowski, “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

Anlage, S. M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[CrossRef]

Antonov, A. S.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Avrutsky, I.

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70, 155416 (2004).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Batenin, V. M.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Batygin, V.

V. Batygin and I. Toptygin, Problems in Electrodynamics (Academic, 1978).

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Bergman, D.

D. Bergman and M. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Brueck, S.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Cai, W.

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

Capasso, F.

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Chettiar, U.

Chistyaev, V. A.

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

Cho, A.

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Cui, T. J.

T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
[CrossRef]

Demkovich, P.

A. Sudarkin and P. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764-766 (1989).

Dimmock, J. O.

Dolling, G.

Drachev, V.

Drachev, V. P.

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alù, N. Engheta, A. Erontuk, and R. W. Ziolkowski, “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

N. Engheta, “An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10-13 (2002).
[CrossRef]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892-894 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

Erontuk, A.

A. Alù, N. Engheta, A. Erontuk, and R. W. Ziolkowski, “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Fang, A.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

Fang, N.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Fedotov, V. A.

Firsov, A.

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Friis, H. T.

S. A. Schelkunoff and H. T. Friis, Antennas: Theory and Practice (John Wiley & Sons, 1952).

Gan, Y. B.

L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “The thickness dependence of resonance frequency in anisotropic composites with long conductive fibers,” Electromagnetics 25, 69-79 (2005).
[CrossRef]

García-Pomar, J. L.

Gartstein, Yu. N.

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029-1044 (2006).
[CrossRef]

Geim, A.

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Gleeson, H.

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Gmachl, C.

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Grigorenko, A.

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Hao, Z. -C.

T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
[CrossRef]

He, S.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Hong, W.

T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
[CrossRef]

Hutchinson, A.

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Jha, R. M.

K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer Academic, 1996).
[CrossRef]

Jin, Y.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[CrossRef]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Kalachev, A. A.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Khrushchev, I.

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Kildishev, A.

Kildishev, A. V.

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

Kisel, V. N.

A. N. Lagarkov, V. N. Kisel, and V. N. Semenenko, “Wide-angle absorption by the use of a metamaterial plate,” Progress in Electromagnetics Research Letters 1, 35-44 (2008).
[CrossRef]

V. N. Kisel and A. N. Lagarkov, “Near perfect absorption by a flat metamaterial plate,” Phys. Rev. E 76, 065601 (2007).
[CrossRef]

A. N. Lagarkov and V. N. Kisel, “Metamaterials and superresolution: from homogenization to rigorous approach,” Physica B 394, 163-166 (2007).
[CrossRef]

V. N. Kisel and A. N. Lagarkov, “Electromagnetic wave scattering by the negative refraction index bodies,” Electromagnetic Waves and Electronic Systems 7, 62-65 (2002).

A. N. Lagarkov and V. N. Kisel, “Electrodynamic properties of simple bodies made of materials with negative permeability and negative permittivity,” Dokl. Phys. 46, 163-165 (2001).
[CrossRef]

Kisel', V. N.

A. N. Lagar'kov and V. N. Kisel', “Quality of focusing electromagnetic radiation by a plane-parallel slab with a negative index of refraction,” Dokl. Phys. 49, 5-10 (2004).
[CrossRef]

Kissel, V. N.

V. N. Kissel and A. N. Lagarkov, “Superresolution in left-handed composite structures: from homogenization to a detailed electrodynamic description,” Phys. Rev. B 72, 085111 (2005).
[CrossRef]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

A. N. Lagarkov and V. N. Kissel, “Numerical and experimental investigation of the superresolution in a focusing system based on a plate of 'left-handed' material,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 157-160.

V. N. Kissel and A. N. Lagarkov, “A study into the possibility of field focusing using 'left-handed' materials,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 145-148.

Klar, T.

T. Klar, A. Kildishev, V. Drachev, and V. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006).
[CrossRef]

Klimeck, G.

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

Knott, E. F.

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

Kogan, B.

B. Kogan, V. Volkov, and S. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100-105 (1972).

Kolesnikov, A. I.

A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.

Kong, J. A.

T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
[CrossRef]

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Koschny, Th.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

Kuang, J.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[CrossRef]

Kulakov, A. V.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Kuo, P.

Kwon, D.

Lagarkov, A. N.

A. N. Lagarkov, V. N. Kisel, and V. N. Semenenko, “Wide-angle absorption by the use of a metamaterial plate,” Progress in Electromagnetics Research Letters 1, 35-44 (2008).
[CrossRef]

A. N. Lagarkov and V. N. Kisel, “Metamaterials and superresolution: from homogenization to rigorous approach,” Physica B 394, 163-166 (2007).
[CrossRef]

V. N. Kisel and A. N. Lagarkov, “Near perfect absorption by a flat metamaterial plate,” Phys. Rev. E 76, 065601 (2007).
[CrossRef]

V. N. Kissel and A. N. Lagarkov, “Superresolution in left-handed composite structures: from homogenization to a detailed electrodynamic description,” Phys. Rev. B 72, 085111 (2005).
[CrossRef]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

V. N. Kisel and A. N. Lagarkov, “Electromagnetic wave scattering by the negative refraction index bodies,” Electromagnetic Waves and Electronic Systems 7, 62-65 (2002).

A. N. Lagarkov and V. N. Kisel, “Electrodynamic properties of simple bodies made of materials with negative permeability and negative permittivity,” Dokl. Phys. 46, 163-165 (2001).
[CrossRef]

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318-6336 (1996).
[CrossRef]

A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).

A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.

A. N. Lagarkov, L. V. Panina, A. K. Sarychev, and Y. R. Smychkovich, in MRS Spring Meeting (1990), paper S 9.3.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

A. N. Lagarkov and V. N. Kissel, “Numerical and experimental investigation of the superresolution in a focusing system based on a plate of 'left-handed' material,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 157-160.

V. N. Kissel and A. N. Lagarkov, “A study into the possibility of field focusing using 'left-handed' materials,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 145-148.

Lagar'kov, A. N.

A. N. Lagar'kov and V. N. Kisel', “Quality of focusing electromagnetic radiation by a plane-parallel slab with a negative index of refraction,” Dokl. Phys. 49, 5-10 (2004).
[CrossRef]

Lamb, H.

H. Lamb, “On group velocity,” Proc. London Math. Soc. S2-1, 473-479 (1904).
[CrossRef]

Lebedev, S.

B. Kogan, V. Volkov, and S. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100-105 (1972).

Li, D. B.

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80, 153304 (2009).
[CrossRef]

Linden, S.

Liu, L.

L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “The thickness dependence of resonance frequency in anisotropic composites with long conductive fibers,” Electromagnetics 25, 69-79 (2005).
[CrossRef]

Makhnovskii, D. P.

A. P. Vinogradov, D. P. Makhnovskii, and K. N. Rozanov, “Effective boundary layer in composite materials,” J. Commun. Technol. Electron. 44, 317-322 (1999).

Malloy, K.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Mandelshtam, L. I.

L. I. Mandelshtam, “Lectures given on February 26, 1940 and on May 5, 1944” in Complete Issue of Works (Izdatelstvo Trudov AN SSSR, 1950) (in Russian), Vol. 5.

Matitsine, S. M.

L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “The thickness dependence of resonance frequency in anisotropic composites with long conductive fibers,” Electromagnetics 25, 69-79 (2005).
[CrossRef]

Matitzin, S. M.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Matytsin, S. M.

A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.

Meinzer, N.

Narimanov, E.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Ning, C. Z.

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80, 153304 (2009).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Novogrudskiy, L. N.

A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.

Ong, C. K.

X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
[CrossRef]

C. K. Ong and X. S. Rao, “Resolution enhancement of a left-handed material superlens,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 123-126.

Orloff, N.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[CrossRef]

Osgood, R.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Panina, L. V.

A. N. Lagarkov, L. V. Panina, A. K. Sarychev, and Y. R. Smychkovich, in MRS Spring Meeting (1990), paper S 9.3.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Panoiu, N.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Pendry, J.

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[CrossRef]

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Petrovic, J.

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Plotz, G.

Plum, E.

Podolskiy, V.

Pukhov, A. A.

A. K. Sarychev, A. A. Pukhov, and G. Tartakovsky, “Metamaterial comprising plasmonic nanolasers,” in Progress in Electromagnetics Research Symposium (PIERS) (2007), pp. 95-98.

Ramakrishna, S.

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[CrossRef]

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Rao, X. S.

X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
[CrossRef]

C. K. Ong and X. S. Rao, “Resolution enhancement of a left-handed material superlens,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 123-126.

Ricci, M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Rozanov, K. N.

L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “The thickness dependence of resonance frequency in anisotropic composites with long conductive fibers,” Electromagnetics 25, 69-79 (2005).
[CrossRef]

A. P. Vinogradov, D. P. Makhnovskii, and K. N. Rozanov, “Effective boundary layer in composite materials,” J. Commun. Technol. Electron. 44, 317-322 (1999).

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.

Ruan, Z.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[CrossRef]

Ruther, M.

Ryabov, D. E.

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

Sarychev, A.

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[CrossRef]

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[CrossRef]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275-371 (2000).
[CrossRef]

A. Sarychev and V. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).
[CrossRef]

A. Sarychev and V. Shalaev, “Magnetic resonance in metal nanoantennas,” in Complex Mediums V: Light and Complexity, M.McCall and G.Dewar, eds., Proc. SPIE 5508128-137 (2004).

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” in Complex Photonic Media, G.Dewar, M.McCall, M.Noginov, and N.Zheludev, eds., Proc. SPIE 6320, 63200A (2006).

Sarychev, A. K.

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318-6336 (1996).
[CrossRef]

A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).

A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.

A. N. Lagarkov, L. V. Panina, A. K. Sarychev, and Y. R. Smychkovich, in MRS Spring Meeting (1990), paper S 9.3.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

A. K. Sarychev, A. A. Pukhov, and G. Tartakovsky, “Metamaterial comprising plasmonic nanolasers,” in Progress in Electromagnetics Research Symposium (PIERS) (2007), pp. 95-98.

Schelkunoff, S. A.

S. A. Schelkunoff and H. T. Friis, Antennas: Theory and Practice (John Wiley & Sons, 1952).

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Semenenko, V. N.

A. N. Lagarkov, V. N. Kisel, and V. N. Semenenko, “Wide-angle absorption by the use of a metamaterial plate,” Progress in Electromagnetics Research Letters 1, 35-44 (2008).
[CrossRef]

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

Shaeffer, J. F.

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

Shalaev, V.

A. Kildishev, V. Drachev, U. Chettiar, V. Shalaev, D. Werner, and D. Kwon, “Comment on 'Negative refractive index in artificial metamaterials',” Opt. Lett. 32, 1510-1511 (2007).
[CrossRef] [PubMed]

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[CrossRef]

T. Klar, A. Kildishev, V. Drachev, and V. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006).
[CrossRef]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275-371 (2000).
[CrossRef]

A. Sarychev and V. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).
[CrossRef]

A. Sarychev and V. Shalaev, “Magnetic resonance in metal nanoantennas,” in Complex Mediums V: Light and Complexity, M.McCall and G.Dewar, eds., Proc. SPIE 5508128-137 (2004).

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

V. M. Shalaev, Nat. Photonics 1, 41-48 (2007).
[CrossRef]

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

Shvets, G.

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[CrossRef]

Simon, H.

Simovski, C. R.

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

Sivco, D.

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Sivuhin, D. V.

D. V. Sivuhin, “About the energy of electromagnetic field in dispersing media,” Opt. Spektrosk. 3, 308-312 (1957) (in Russian).

Smichkovich, Yu. R.

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Smychkovich, Y. R.

A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).

A. N. Lagarkov, L. V. Panina, A. K. Sarychev, and Y. R. Smychkovich, in MRS Spring Meeting (1990), paper S 9.3.

Soukoulis, C.

Soukoulis, C. M.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonicmetamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785-19798 (2008).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Stockman, M.

D. Bergman and M. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Sudarkin, A.

A. Sudarkin and P. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764-766 (1989).

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Tartakovsky, G.

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[CrossRef]

A. K. Sarychev, A. A. Pukhov, and G. Tartakovsky, “Metamaterial comprising plasmonic nanolasers,” in Progress in Electromagnetics Research Symposium (PIERS) (2007), pp. 95-98.

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” in Complex Photonic Media, G.Dewar, M.McCall, M.Noginov, and N.Zheludev, eds., Proc. SPIE 6320, 63200A (2006).

Toptygin, I.

V. Batygin and I. Toptygin, Problems in Electrodynamics (Academic, 1978).

Tredicucci, A.

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Tretyakov, S. A.

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

Tsai, D. P.

Tucciarone, J.

Tuley, M. T.

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

Ulin-Avil, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vinogradov, A. P.

A. P. Vinogradov, D. P. Makhnovskii, and K. N. Rozanov, “Effective boundary layer in composite materials,” J. Commun. Technol. Electron. 44, 317-322 (1999).

A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

Vinoy, K. J.

K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer Academic, 1996).
[CrossRef]

Volkov, V.

B. Kogan, V. Volkov, and S. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100-105 (1972).

Wegener, M.

Werner, D.

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Yin, X. X.

T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
[CrossRef]

Yuan, H. -K.

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Zhang, Y.

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Zheludev, N. I.

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

Ziolkowski, R. W.

A. Alù, N. Engheta, A. Erontuk, and R. W. Ziolkowski, “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[CrossRef]

A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Dokl. Phys. (2)

A. N. Lagar'kov and V. N. Kisel', “Quality of focusing electromagnetic radiation by a plane-parallel slab with a negative index of refraction,” Dokl. Phys. 49, 5-10 (2004).
[CrossRef]

A. N. Lagarkov and V. N. Kisel, “Electrodynamic properties of simple bodies made of materials with negative permeability and negative permittivity,” Dokl. Phys. 46, 163-165 (2001).
[CrossRef]

Electromagnetic Waves and Electronic Systems (1)

V. N. Kisel and A. N. Lagarkov, “Electromagnetic wave scattering by the negative refraction index bodies,” Electromagnetic Waves and Electronic Systems 7, 62-65 (2002).

Electromagnetics (2)

L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “The thickness dependence of resonance frequency in anisotropic composites with long conductive fibers,” Electromagnetics 25, 69-79 (2005).
[CrossRef]

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of bi-helix media at microwaves,” Electromagnetics 17, 213-237 (1997).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

A. Alù, N. Engheta, A. Erontuk, and R. W. Ziolkowski, “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

IEEE Antennas Wireless Propag. Lett. (1)

N. Engheta, “An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10-13 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Klar, A. Kildishev, V. Drachev, and V. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Commun. Technol. Electron. (1)

A. P. Vinogradov, D. P. Makhnovskii, and K. N. Rozanov, “Effective boundary layer in composite materials,” J. Commun. Technol. Electron. 44, 317-322 (1999).

J. Electromagn. Waves Appl. (1)

A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).

J. Opt. Soc. Am. (1)

JETP Lett. (1)

B. Kogan, V. Volkov, and S. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100-105 (1972).

Laser Phys. Lett. (1)

V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 49-55 (2006).
[CrossRef]

Nat. Photonics (1)

V. M. Shalaev, Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Nature (3)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avil, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110-1112 (2009).
[CrossRef] [PubMed]

New J. Phys. (1)

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Spektrosk. (1)

D. V. Sivuhin, “About the energy of electromagnetic field in dispersing media,” Opt. Spektrosk. 3, 308-312 (1957) (in Russian).

Phys. Lett. A (1)

T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, “Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials,” Phys. Lett. A 323, 484-494 (2004).
[CrossRef]

Phys. Rep. (1)

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275-371 (2000).
[CrossRef]

Phys. Rev. B (7)

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007).
[CrossRef]

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70, 155416 (2004).
[CrossRef]

S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
[CrossRef]

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80, 153304 (2009).
[CrossRef]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318-6336 (1996).
[CrossRef]

V. N. Kissel and A. N. Lagarkov, “Superresolution in left-handed composite structures: from homogenization to a detailed electrodynamic description,” Phys. Rev. B 72, 085111 (2005).
[CrossRef]

Phys. Rev. E (3)

X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
[CrossRef]

V. N. Kisel and A. N. Lagarkov, “Near perfect absorption by a flat metamaterial plate,” Phys. Rev. E 76, 065601 (2007).
[CrossRef]

A. Sarychev, G. Shvets, and V. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

D. Bergman and M. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

Phys. Usp. (1)

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029-1044 (2006).
[CrossRef]

Physica B (1)

A. N. Lagarkov and V. N. Kisel, “Metamaterials and superresolution: from homogenization to rigorous approach,” Physica B 394, 163-166 (2007).
[CrossRef]

Proc. London Math. Soc. (1)

H. Lamb, “On group velocity,” Proc. London Math. Soc. S2-1, 473-479 (1904).
[CrossRef]

Progress in Electromagnetics Research Letters (1)

A. N. Lagarkov, V. N. Kisel, and V. N. Semenenko, “Wide-angle absorption by the use of a metamaterial plate,” Progress in Electromagnetics Research Letters 1, 35-44 (2008).
[CrossRef]

Science (1)

G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Sov. Phys. Tech. Phys. (1)

A. Sudarkin and P. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764-766 (1989).

Sov. Phys. Usp. (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (15)

L. I. Mandelshtam, “Lectures given on February 26, 1940 and on May 5, 1944” in Complete Issue of Works (Izdatelstvo Trudov AN SSSR, 1950) (in Russian), Vol. 5.

S. A. Schelkunoff and H. T. Friis, Antennas: Theory and Practice (John Wiley & Sons, 1952).

A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagarkov, S. M. Matitzin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smichkovich, in Electrophysical Properties of Percolation Systems, A.N.Lagarkov, ed. (Institute for High Temperatures, Russian Academy of Sciences, 1990) (in Russian).

A. N. Lagarkov, L. V. Panina, A. K. Sarychev, and Y. R. Smychkovich, in MRS Spring Meeting (1990), paper S 9.3.

A. I. Kolesnikov, A. N. Lagarkov, S. M. Matytsin, L. N. Novogrudskiy, K. N. Rozanov, and A. K. Sarychev, Dielectric Permeability and Conductivity of Polymers Containing Conductive Inclusions, Optical and Electrical Properties of Polymers No. 214, J.A.Emerson and J.M.Torkelson, eds. (Materials Research Society, 1991), p. 119.

C. K. Ong and X. S. Rao, “Resolution enhancement of a left-handed material superlens,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 123-126.

A. N. Lagarkov and V. N. Kissel, “Numerical and experimental investigation of the superresolution in a focusing system based on a plate of 'left-handed' material,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 157-160.

K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer Academic, 1996).
[CrossRef]

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

A. Sarychev and V. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).
[CrossRef]

V. N. Kissel and A. N. Lagarkov, “A study into the possibility of field focusing using 'left-handed' materials,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, L.Hock, O.C.Kim, S.Matitsine, and G.Y.Beng, eds. (World Scientific, 2003), pp. 145-148.

A. K. Sarychev, A. A. Pukhov, and G. Tartakovsky, “Metamaterial comprising plasmonic nanolasers,” in Progress in Electromagnetics Research Symposium (PIERS) (2007), pp. 95-98.

A. Sarychev and V. Shalaev, “Magnetic resonance in metal nanoantennas,” in Complex Mediums V: Light and Complexity, M.McCall and G.Dewar, eds., Proc. SPIE 5508128-137 (2004).

V. Batygin and I. Toptygin, Problems in Electrodynamics (Academic, 1978).

A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” in Complex Photonic Media, G.Dewar, M.McCall, M.Noginov, and N.Zheludev, eds., Proc. SPIE 6320, 63200A (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Arrangement of inclusions in the metamaterial plate and (b) field of linear sources in the presence of that plate.

Fig. 2
Fig. 2

(a) Electromagnetic excitation of a pair of electric and magnetic resonators, (b) equivalent electric and magnetic dipoles, and (c) a far-field radiation pattern of the couple.

Fig. 3
Fig. 3

Field of a pair of filament sources nearby a metamaterial plate with active inclusions of different sizes Δ / 2 .

Fig. 4
Fig. 4

Field of filament sources near a metamaterial plate with wire elements made of (a) an almost perfect conductor, (b) copper, and (d) copper with active inclusions and (c) a model of a metamaterial with active insertions: (1) a lossy conductor and (2) active capacitive loads. Sources are placed at k x = 0.4 and k y = ± 0.4 .

Fig. 5
Fig. 5

(a) Ray diagram illustrating suppression of the radiation of a point source in the exterior space and (b) the diagram illustrating the operation of an absorber with a metamaterial and semitransparent film.

Fig. 6
Fig. 6

Horseshoe nanoantenna geometry; parameters used in modeling: a = 300   nm , d = 70   nm , b = 34   nm .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ 2 I ( z ) Z U z ] Δ z = d c ( 4 π c I ̇ ( z ) + H ̇ 0 ) Δ z ,
2 I ( z , t ) z 2 P ̇ ( z , t ) z Z 2 π d I ( z , t ) = 1 4 π c [ 4 π c I ̈ ( z ) + H ̈ 0 ] .
2 I ( z , t ) z 2 P ̇ 2 ( z , t ) z Z ε d 2 π d I ( z , t ) = ε d 4 π c [ 4 π c I ̈ ( z ) + H ̈ 0 ] ,
2 I ( z ) z 2 = g 2 I ( z ) ε d ω k 4 π H 0 ,
g 2 = ε d k 2 2 ε d / ( b d ε m ) ,
α M = 4 a d ω p λ 2 ω r 1 1 ω / ω r i ω τ / ( 2 ω r ) ,
P 2 = Π b   exp ( i ω t ) + Π b +   exp ( i ω t ) ,
( i δ + γ ) q 2 i b = 0 ,     ( i Δ + Γ ) b i A D q 2 = 0 ,    
( D D 0 ) / τ 2 i A ( q 2 b q 2 b + ) = 0 ,
Δ / Γ = δ / γ ,     ( δ / γ ) 2 + 1 + A D 0 / ( Γ γ ) = 0.
G λ / ( 2 π n γ ) > 1 ,

Metrics