Abstract

We introduce and demonstrate a simple, compact, and automatically aligned ultrashort-pulse compressor that uses only a single diffraction element—a grating or a grism (a grating on a prism). This design automatically has unity beam magnification and automatically contributes zero spatiotemporal distortions to the pulse, thus avoiding spatial chirp, angular dispersion, pulse-front tilt, and all other first-order spatiotemporal distortions. It is comprised of only three elements: a diffraction element, a corner cube, and a roof mirror. Half the size of comparable two-grating compressors, it can provide large amounts of negative group-delay dispersion with small translations of the corner cube. The device can operate on pulses with both large and small bandwidths by varying the corner-cube position. Using a grism as the diffraction element, material dispersion up to the third order can be compensated, and we demonstrated compensation for 10m of optical fiber for 800nm pulses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150-152 (1984).
    [Crossref] [PubMed]
  2. Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54, 165-170 (1985).
    [Crossref]
  3. S. Kane and J. Squier, “Grism-pair stretcher-compressor system for simultaneous second and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14, 661-665 (1997).
    [Crossref]
  4. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatiotemporal distortions of Gaussian pulses and beams,” Opt. Express 13, 8642-8661 (2005).
    [Crossref] [PubMed]
  5. K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
    [Crossref]
  6. S. Akturk, X. Gu, M. Kimmel, and R. Trebino, “Extremely simple single-prism ultrashort-pulse compressor,” Opt. Express 14, 10101-10108 (2006).
    [Crossref] [PubMed]
  7. M. Lai, S. T. Lai, and C. Swinger, “Single-grating laser pulse stretcher and compressor,” Appl. Opt. 33, 6985-6987 (1994).
    [Crossref] [PubMed]
  8. J. J. Field, C. G. Durfee, J. A. Squier, and S. Kane, “Quartic-phase limited grism-based ultrashort pulse shaper,” Opt. Lett. 32, 3101-3103 (2007).
    [Crossref] [PubMed]
  9. A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148-1157 (1990).
    [Crossref]
  10. P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, S. Akturk, and R. Trebino, “Spatially resolved spectral interferometry,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FThM1.
  11. P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, and R. Trebino, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006).
    [Crossref] [PubMed]
  12. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599-604 (2004).
    [Crossref]
  13. P. Gabolde, D. Lee, S. Akturk, and R. Trebino, “Describing first-order spatiotemporal distortions in ultrashort pulses using normalized parameters,” Opt. Express 15, 242-251 (2007).
    [Crossref] [PubMed]

2007 (2)

2006 (2)

2005 (1)

2004 (2)

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599-604 (2004).
[Crossref]

1997 (1)

1994 (1)

1990 (1)

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148-1157 (1990).
[Crossref]

1985 (1)

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54, 165-170 (1985).
[Crossref]

1984 (1)

Akturk, S.

Bor, Z.

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54, 165-170 (1985).
[Crossref]

Bowlan, P.

P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, and R. Trebino, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006).
[Crossref] [PubMed]

P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, S. Akturk, and R. Trebino, “Spatially resolved spectral interferometry,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FThM1.

Csatari, M.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

Durfee, C. G.

Field, J. J.

Fork, R. L.

Gabolde, P.

Gordon, J. P.

Gu, X.

Heiner, Z.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

Kane, S.

Kimmel, M.

Klebniczki, J.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

Kostenbauder, A. G.

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148-1157 (1990).
[Crossref]

Kovacs, A. P.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

Kurdi, G.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

Lai, M.

Lai, S. T.

Lee, D.

Martinez, O. E.

McGresham, K.

P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, and R. Trebino, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006).
[Crossref] [PubMed]

P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, S. Akturk, and R. Trebino, “Spatially resolved spectral interferometry,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FThM1.

Osvay, K.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

Racz, B.

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54, 165-170 (1985).
[Crossref]

Schreenath, A.

P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, and R. Trebino, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006).
[Crossref] [PubMed]

P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, S. Akturk, and R. Trebino, “Spatially resolved spectral interferometry,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FThM1.

Squier, J.

Squier, J. A.

Swinger, C.

Trebino, R.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148-1157 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54, 165-170 (1985).
[Crossref]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599-604 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (1)

P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, S. Akturk, and R. Trebino, “Spatially resolved spectral interferometry,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FThM1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Conventional four-prism pulse compressor.

Fig. 2
Fig. 2

Two-prism pulse compressor.

Fig. 3
Fig. 3

Schematic diagram of single-prism pulse compressor.

Fig. 4
Fig. 4

Schematic diagram of single-grating pulse compressor.

Fig. 5
Fig. 5

Schematic diagram for single-grism pulse compressor.

Fig. 6
Fig. 6

Variation of GDD versus distance in single-grating pulse compressor.

Fig. 7
Fig. 7

GDD versus distance in single-grism pulse compressor.

Fig. 8
Fig. 8

Spatiospectral plot revealing the lack of spatial chirp in the compressor output after four beam passes, indicated by the lack of tilt in this plot. The minor structure and the fringes at right are due to a stray reflection also entering the spectrometer and hence are of no significance.

Fig. 9
Fig. 9

Spectrum and spectral phase before and after the compressor.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M 1 = sin φ sin ψ = M 3 and M 2 = sin ψ sin φ = M 4 ,
K = K grating K space K grating K mirror K grating K space K grating .
GDD grating = | λ 3 2 π c 2 b d 2 cos 2 θ | λ 0 ,
K c = K grism K space K grism K mirror K grism K space K grism .

Metrics