Abstract

By using an elegant response function theory, which does not require matching of the messy boundary conditions, we investigate the surface plasmon excitations in the multicoaxial cylindrical cables made up of negative-index metamaterials. The multicoaxial cables with dispersive metamaterial components exhibit a rather richer (and complex) plasmon spectrum with each interface supporting two modes: one TM and the other TE for m0 (the integer order of the Bessel function). The cables with nondispersive metamaterial components bear a different tale: they do not support simultaneously both TM and TE modes over the whole range of propagation vector. The computed local and total density of states enable us to substantiate spatial positions of the modes in the spectrum. Such quasi-one-dimensional systems as studied here should prove to be the milestones of the emerging optoelectronics and telecommunications systems.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For an extensive review of electronic, optical, and transport properties of surfaces/interfaces, thin films, inversion layers, and systems of reduced dimensions such as quantum wells, wires, dots, and (electrically and/or magnetically) modulated 2D systems, see M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416 (2001).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  3. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  5. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001).
    [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  7. D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
    [CrossRef]
  8. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
    [CrossRef] [PubMed]
  9. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
    [CrossRef] [PubMed]
  10. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  11. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
    [CrossRef]
  12. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
    [CrossRef] [PubMed]
  13. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007).
    [CrossRef]
  14. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).
    [CrossRef] [PubMed]
  15. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  17. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  18. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [CrossRef] [PubMed]
  19. M. G. Silveirinha, “Anomalous refraction of light colors by a metamaterial prism,” Phys. Rev. Lett. 102, 193903 (2009).
    [CrossRef] [PubMed]
  20. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  21. M. S. Kushwaha and B. Djafari-Rouhani, “Theory of confined plasmonic waves in coaxial cylindrical cables fabricated of metamaterials,” J. Opt. Soc. Am. B 27, 148-167 (2010).
    [CrossRef]
  22. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
    [CrossRef] [PubMed]
  23. G. D. Banyard, C. R. Bennett, and M. Babiker, “Enhancement of energy relaxation rates near metal-coated dielectric cylinders,” Opt. Commun. 207, 195-200 (2002).
    [CrossRef]
  24. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005).
    [CrossRef] [PubMed]

2010

2009

M. G. Silveirinha, “Anomalous refraction of light colors by a metamaterial prism,” Phys. Rev. Lett. 102, 193903 (2009).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).
[CrossRef] [PubMed]

2008

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

2007

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007).
[CrossRef]

2006

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

2005

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005).
[CrossRef] [PubMed]

2004

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

2002

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

G. D. Banyard, C. R. Bennett, and M. Babiker, “Enhancement of energy relaxation rates near metal-coated dielectric cylinders,” Opt. Commun. 207, 195-200 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

For an extensive review of electronic, optical, and transport properties of surfaces/interfaces, thin films, inversion layers, and systems of reduced dimensions such as quantum wells, wires, dots, and (electrically and/or magnetically) modulated 2D systems, see M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416 (2001).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Babiker, M.

G. D. Banyard, C. R. Bennett, and M. Babiker, “Enhancement of energy relaxation rates near metal-coated dielectric cylinders,” Opt. Commun. 207, 195-200 (2002).
[CrossRef]

Banyard, G. D.

G. D. Banyard, C. R. Bennett, and M. Babiker, “Enhancement of energy relaxation rates near metal-coated dielectric cylinders,” Opt. Commun. 207, 195-200 (2002).
[CrossRef]

Bennett, C. R.

G. D. Banyard, C. R. Bennett, and M. Babiker, “Enhancement of energy relaxation rates near metal-coated dielectric cylinders,” Opt. Commun. 207, 195-200 (2002).
[CrossRef]

Chen, Z.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Djafari-Rouhani, B.

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Fan, S.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Fink, Y.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Hooper, I. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Kivshar, Y. S.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005).
[CrossRef] [PubMed]

Kushwaha, M. S.

M. S. Kushwaha and B. Djafari-Rouhani, “Theory of confined plasmonic waves in coaxial cylindrical cables fabricated of metamaterials,” J. Opt. Soc. Am. B 27, 148-167 (2010).
[CrossRef]

For an extensive review of electronic, optical, and transport properties of surfaces/interfaces, thin films, inversion layers, and systems of reduced dimensions such as quantum wells, wires, dots, and (electrically and/or magnetically) modulated 2D systems, see M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416 (2001).
[CrossRef]

Lawrence, C. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
[CrossRef]

Padilla, W.

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Preist, T. W.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).
[CrossRef] [PubMed]

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
[CrossRef]

Shadrivov, I. V.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, “Anomalous refraction of light colors by a metamaterial prism,” Phys. Rev. Lett. 102, 193903 (2009).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Suckling, J. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Sukhorukov, A. A.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005).
[CrossRef] [PubMed]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Thomas, E. L.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
[CrossRef]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Nature

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun.

G. D. Banyard, C. R. Bennett, and M. Babiker, “Enhancement of energy relaxation rates near metal-coated dielectric cylinders,” Opt. Commun. 207, 195-200 (2002).
[CrossRef]

Phys. Rev. B

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007).
[CrossRef]

Phys. Rev. Lett.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha, “Anomalous refraction of light colors by a metamaterial prism,” Phys. Rev. Lett. 102, 193903 (2009).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005).
[CrossRef] [PubMed]

Science

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Surf. Sci. Rep.

For an extensive review of electronic, optical, and transport properties of surfaces/interfaces, thin films, inversion layers, and systems of reduced dimensions such as quantum wells, wires, dots, and (electrically and/or magnetically) modulated 2D systems, see M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the multi-coaxial cables: the side view showing the alignments of the cylindrical cables of circular cross sections of radii R j + 1 > R j , and n media with n 1 interfaces. The innermost circle marked as 1 refers to the innermost cable of radius R 1 enclosed by the consecutive ( n 1 ) shells assumed to be numbered as 2, 3,…. ( n 2 ) , ( n 1 ) and clad by an outermost semi-infinite medium n. Our exact general theory schematically outlined in Fig. 2 allows one to consider the resultant system to be made up of negative-index (dispersive or nondispersive) metamaterials interlaced with conventional dielectrics, metals, or semiconductors.

Fig. 2
Fig. 2

Graphic representation of the complete formalism for the total inverse response function g ̃ 1 ( ) for the resultant system shown in a desired compact form. Here n refers to the total number of media comprising the MCMC system, with m = n 1 as the number of interfaces, l = n 2 , and k = n 3 . . etc. The plasma modes of the system are defined by det [ g ̃ 1 ( ) ] = 0 .

Fig. 3
Fig. 3

Plasmon dispersion for a perfect multicoaxial cable system made up of a dispersive negative-index metamaterial interlaced with conventional dielectrics for N = 15 and m = 0 . The dimensionless plasma frequency used in the computation is specified by ω p R 1 c = 3.5 and the dimensionless thicknesses of the shells are defined by Δ r j , j + 1 = 0.35 . Dashed line and dashed curve marked as LL1 and LL2 refer, respectively, to the light lines in the vacuum and the metamaterial. The (dark) thick band of frequencies is piled up at the characteristic resonance frequency ( ω 0 ) . We call attention to the resonance splitting of the lower TM confined modes due to the resonance frequency ( ω 0 ) in the problem. The shaded area represents the region within which both ϵ ( ω ) and μ ( ω ) are negative and disallows the existence of truly confined modes. The system as a whole is represented by RLR…RLR design. Here R refers to the RHM and L to the LHM.

Fig. 4
Fig. 4

Local density of states for the system discussed in Fig. 3 and for n = 15 , m = 0 , and ζ = 1.0 . The bottom, middle, and top panels refer, respectively, to LDOS at interface 1, interface 7, and interface 14 in the system. The rest of the parameters used are the same as in Fig. 3. The arrows in the panels indicate relatively smaller (in height) peaks.

Fig. 5
Fig. 5

Right panel: plasmon dispersion for a perfect MCMC cable system made up of a nondispersive negative-index metamaterial interlaced with conventional dielectrics for n = 9 and m = 0 . There are well-defined ( n 1 ) TM modes in the system: upper four starting from the light line and the lower four from the nonzero propagation vector. The dimensionless thicknesses of the shells are defined by Δ r j , j + 1 = 0.25 . The shaded region stands for the purely radiative modes (not shown). We call attention to the sharply downward modes, indicated by arrows, which are the ill-behaved TE modes in the LWL. Left panel: total density of states as a function of reduced frequency ω R 1 c for propagation wave vector k R 1 = 21.5 .

Metrics