Abstract

We investigate numerically and experimentally the propagation of visible sub-50 fs pulses in a tapered small core photonic crystal fiber. The fiber has anomalous dispersion between two closely spaced zero dispersion wavelengths at 509 and 640 nm, and the excitation wavelength was varied within this range. We find that the spectral evolution in the low power regime is dominated by higher-order soliton fission, soliton self-frequency shift, and dispersive wave generation. At higher powers, extremely wide spectral broadening of the input pulse occurs within the first few millimeters of fiber. The wavelength conversion into the blue and red spectral ranges is studied as a function of the input power and excitation wavelength. Conversions into the spectral range 300–470 nm at efficiencies as high as 40% are observed when pumping at 523 nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
    [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, “Observation of the self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592-594 (1970).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  4. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  6. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392-394 (1988).
    [CrossRef] [PubMed]
  7. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938-1946 (1987).
    [CrossRef]
  8. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510-524 (1987).
    [CrossRef]
  9. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  10. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  11. J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19, 2065-2067 (1994).
    [CrossRef] [PubMed]
  12. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  13. A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, “Bound soliton pairs in photonic crystal fiber,” Opt. Express 15, 1653-1662 (2007).
    [CrossRef] [PubMed]
  14. A. Podlipensky, P. Szarniak, N. Y. Joly, and P. St. J. Russell, “Anomalous pulse breakup in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 2049-2056 (2008).
    [CrossRef]
  15. V. I. Karpman, “Radiations by solitons due to higher-order dispersion,” Phys. Rev. E 47, 2073-2082 (1993).
    [CrossRef]
  16. A. Höök and M. Karlsson, “Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion,” Opt. Lett. 18, 1388-1390 (1993).
    [CrossRef] [PubMed]
  17. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181-6192 (2005).
    [CrossRef] [PubMed]
  18. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556-9569 (2005).
    [CrossRef] [PubMed]
  19. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408-9414 (2006).
    [CrossRef] [PubMed]
  20. M. A. Foster and A. L. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12, 3137-3143 (2004).
    [CrossRef] [PubMed]
  21. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  22. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B 23, 1221-1227 (2006).
    [CrossRef]
  23. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  25. J. V. Moloney and A. C. Newell, Nonlinear Optics (Westview, 2004).
  26. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006).
    [CrossRef] [PubMed]
  27. J. Weideman and B. Herbst, “Split-step methods for the solution of the nonlinear Schrödinger equation,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 23, 485-507 (1986).
    [CrossRef]
  28. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  29. R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654-1656 (1991).
    [CrossRef]
  30. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  31. D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
    [CrossRef]
  32. F. Benabid, F. Biancalana, P. S. Light, F. Couny, A. Luiten, P. J. Roberts, J. Peng, and A. V. Sokolov, “Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding,” Opt. Lett. 33, 2680-2682 (2008).
    [CrossRef] [PubMed]
  33. T. X. Tran and F. Biancalana, “Dynamics and control of the early stage of the supercontinuum generation in submicron-core optical fibers,” Phys. Rev. A 79, 065802 (2009).
    [CrossRef]
  34. J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558-1560 (2002).
    [CrossRef]
  35. N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, “Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber,” Opt. Commun. 248, 281-285 (2004).
    [CrossRef]

2009 (1)

T. X. Tran and F. Biancalana, “Dynamics and control of the early stage of the supercontinuum generation in submicron-core optical fibers,” Phys. Rev. A 79, 065802 (2009).
[CrossRef]

2008 (2)

2007 (1)

2006 (6)

2005 (2)

2004 (3)

2003 (2)

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

2002 (2)

J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558-1560 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

2000 (1)

1994 (1)

1993 (2)

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1991 (1)

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654-1656 (1991).
[CrossRef]

1988 (1)

1987 (2)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510-524 (1987).
[CrossRef]

1986 (3)

1970 (2)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of the self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Agrawal, G. P.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of the self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Andersen, T. V.

Bang, O.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Bekki, N.

Benabid, F.

Biancalana, F.

T. X. Tran and F. Biancalana, “Dynamics and control of the early stage of the supercontinuum generation in submicron-core optical fibers,” Phys. Rev. A 79, 065802 (2009).
[CrossRef]

F. Benabid, F. Biancalana, P. S. Light, F. Couny, A. Luiten, P. J. Roberts, J. Peng, and A. V. Sokolov, “Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding,” Opt. Lett. 33, 2680-2682 (2008).
[CrossRef] [PubMed]

Birks, T. A.

Chen, Z.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Couny, F.

Dudley, J.

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Efimov, A.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, “Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber,” Opt. Commun. 248, 281-285 (2004).
[CrossRef]

Falk, P.

Foster, M. A.

Frosz, M. H.

Gaeta, A. L.

Gattass, R. R.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Giessen, H.

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Gordon, J. P.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Harbold, J. M.

Hasegawa, A.

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392-394 (1988).
[CrossRef] [PubMed]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510-524 (1987).
[CrossRef]

Herbst, B.

J. Weideman and B. Herbst, “Split-step methods for the solution of the nonlinear Schrödinger equation,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 23, 485-507 (1986).
[CrossRef]

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19, 2065-2067 (1994).
[CrossRef] [PubMed]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Holzlohner, R.

Höök, A.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Ilday, F. Ö.

Joly, N. Y.

Karlsson, M.

Karpman, V. I.

V. I. Karpman, “Radiations by solitons due to higher-order dispersion,” Phys. Rev. E 47, 2073-2082 (1993).
[CrossRef]

Kenny, R. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654-1656 (1991).
[CrossRef]

Kibler, B.

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Knight, J. C.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, “Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber,” Opt. Commun. 248, 281-285 (2004).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Knox, W. H.

Kodama, Y.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510-524 (1987).
[CrossRef]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Light, P. S.

Limpert, J.

Lin, Q.

Lu, F.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Luiten, A.

Mason, M. W.

Mazur, E.

Menyuk, C. R.

Mitschke, F. M.

Mollenauer, L. F.

Moloney, J. V.

J. V. Moloney and A. C. Newell, Nonlinear Optics (Westview, 2004).

Motzkus, M.

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Nazarkin, A.

Newell, A. C.

J. V. Moloney and A. C. Newell, Nonlinear Optics (Westview, 2004).

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Oakley, K. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654-1656 (1991).
[CrossRef]

Omenetto, F. G.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, “Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber,” Opt. Commun. 248, 281-285 (2004).
[CrossRef]

Peng, J.

Podlipensky, A.

Poulton, C. G.

Ranka, J. K.

Roberts, P. J.

Russell, P. St. J.

A. Podlipensky, P. Szarniak, N. Y. Joly, and P. St. J. Russell, “Anomalous pulse breakup in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 2049-2056 (2008).
[CrossRef]

A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, “Bound soliton pairs in photonic crystal fiber,” Opt. Express 15, 1653-1662 (2007).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
[CrossRef] [PubMed]

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, “Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber,” Opt. Commun. 248, 281-285 (2004).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Schimpf, D.

Schreiber, T.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of the self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Sinkin, O. V.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Sokolov, A. V.

Stentz, A. J.

Svacha, G. T.

Szarniak, P.

Tai, K.

Taylor, A. J.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, “Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber,” Opt. Commun. 248, 281-285 (2004).
[CrossRef]

Teipel, J.

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Tong, L.

Tran, T. X.

T. X. Tran and F. Biancalana, “Dynamics and control of the early stage of the supercontinuum generation in submicron-core optical fibers,” Phys. Rev. A 79, 065802 (2009).
[CrossRef]

Tünnermann, A.

Türke, D.

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Wadsworth, W. J.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Weideman, J.

J. Weideman and B. Herbst, “Split-step methods for the solution of the nonlinear Schrödinger equation,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 23, 485-507 (1986).
[CrossRef]

Windeler, R. S.

Wise, F. W.

Wohlleben, W.

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Zweck, J.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Appl. Phys. B (1)

D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, “Chirp-controlled soliton fission in tapered optical fibers,” Appl. Phys. B 83, 37-42 (2006).
[CrossRef]

Electron. Lett. (1)

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654-1656 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510-524 (1987).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, “Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber,” Opt. Commun. 248, 281-285 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (9)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000).
[CrossRef]

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392-394 (1988).
[CrossRef] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659-661 (1986).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662-664 (1986).
[CrossRef] [PubMed]

J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19, 2065-2067 (1994).
[CrossRef] [PubMed]

A. Höök and M. Karlsson, “Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion,” Opt. Lett. 18, 1388-1390 (1993).
[CrossRef] [PubMed]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006).
[CrossRef] [PubMed]

J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558-1560 (2002).
[CrossRef]

F. Benabid, F. Biancalana, P. S. Light, F. Couny, A. Luiten, P. J. Roberts, J. Peng, and A. V. Sokolov, “Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding,” Opt. Lett. 33, 2680-2682 (2008).
[CrossRef] [PubMed]

Phys. Rev. A (1)

T. X. Tran and F. Biancalana, “Dynamics and control of the early stage of the supercontinuum generation in submicron-core optical fibers,” Phys. Rev. A 79, 065802 (2009).
[CrossRef]

Phys. Rev. E (1)

V. I. Karpman, “Radiations by solitons due to higher-order dispersion,” Phys. Rev. E 47, 2073-2082 (1993).
[CrossRef]

Phys. Rev. Lett. (3)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of the self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. (1)

J. Weideman and B. Herbst, “Split-step methods for the solution of the nonlinear Schrödinger equation,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 23, 485-507 (1986).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

J. V. Moloney and A. C. Newell, Nonlinear Optics (Westview, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimentally measured dispersion of the original and tapered fibers. The inset shows a SEM of the tapered PCF structure, superimposed at the same scale on top of and SEM of the original structure. The core diameter in the tapered fiber is 0.59 μ m .

Fig. 2
Fig. 2

Experimental setup: NOPA, non-collinear optical parametric amplifier; λ / 2 , half-wave-plate; ND, neutral-density filter; 40×, in-coupling lens.

Fig. 3
Fig. 3

(a) Experimental and (b) numerical power dependent evolutions of the spectra of pulses launched at 575 nm. The horizontal dashed black lines show the ZDWs at 509 and 640 nm. The corresponding soliton order of the input pulse is given along the top of the figure. The color scale is in decibels and applies to all subsequent plots.

Fig. 4
Fig. 4

(a) Experimental and (b) numerical spectra after the fiber for a launched pulse with λ 0 = 575   nm (horizontal solid line), P 0 = 3.5   kW , and T 0 = 32   fs . The vertical dashed black lines show the ZDWs at 509 and 640 nm.

Fig. 5
Fig. 5

Numerical spectral evolution of a pulse launched at 575 nm with P 0 = 270   W (left column) and P 0 = 10   kW (right column). The XFROG spectrograms after 5 cm of propagation are shown in (c) and (d). The horizontal dashed black lines indicate the ZDWs at 509 and 640 nm. Color scale is the same as in Fig. 3.

Fig. 6
Fig. 6

(a) Experimental and (b) numerical power dependent evolutions of pulses launched at 523 nm. The horizontal dashed black lines show the ZDWs at 509 and 640 nm. The corresponding soliton order of the input pulse is given along the top of the figure. Color scale is the same as in Fig. 3.

Fig. 7
Fig. 7

Numerical spectral evolution of a pulse launched at 523 nm with P 0 = 300   W (left column) and P 0 = 10   kW (right column). The XFROG spectrograms after 5 cm of propagation are shown in (c) and (d). The horizontal dashed black lines show the ZDWs at 509 and 640 nm. Color scale is the same as in Fig. 3.

Fig. 8
Fig. 8

(a) Experimental and (b) numerical power dependent evolutions of pulses launched at 640 nm. The horizontal dashed black lines show the ZDWs at 509 and 640 nm. The corresponding soliton order of the input pulse is given along the top of the figure. Color scale is the same as in Fig. 3.

Fig. 9
Fig. 9

Numerical spectral evolution of a pulse launched at 640 nm with P 0 = 655   W (left column) and P 0 = 10   kW (right column). (c) and (d) show the spectrogram after 5 cm of propagation. The horizontal dashed black lines show the ZDWs at 509 and 640 nm. Color scale is the same as in Fig. 3.

Fig. 10
Fig. 10

Power dependent conversion efficiencies for pulses with λ 0 = 523   nm , λ 0 = 575   nm , and λ 0 = 640   nm . (a) shows conversion into the UV (350 to 470 nm), (b) shows conversion into the IR (700–900 nm).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A ( z , τ ) z = D ̂ A ( z , τ ) α 2 A ( z , τ ) + i ( γ ( ω 0 + i γ 1 ) τ ) ( A ( z , τ ) R ( t ) | A ( z , τ ) | 2 d t ) .
D ̂ A ( z , ω ) = i ( β ( ω ) β 1 ( ω ω 0 ) β ( ω 0 ) ) A ( z , ω ) .
γ 1 = | d γ ( ω ) d ω | ω 0 .
R ( τ ) = ( 1 f R ) δ ( τ ) + f R [ ( f a + f c ) h a ( τ ) + f b h b ( τ ) ] ,
h a ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) ,
h b ( t ) = [ 2 τ b t τ b 2 ] exp ( t τ b ) ,

Metrics