Abstract

Bistability in the axial trapping position of aqueous aerosol droplets has been observed for the first time, to our knowledge, in optical tweezers. The behavior has been observed for two distinct trapping configurations, with the trapping beam oriented either along the vertical or horizontal axis. This represents the first report of the optical tweezing of aerosol droplets with a horizontally propagating laser beam. Side imaging was used in conjunction with imaging in the plane of the optical trap. Droplet sizing was performed using cavity-enhanced Raman spectroscopy or by applying a circular regression routine to the acquired images. Predictions from a theoretical model of optical forces are shown to be in good agreement with the experimental observations of bistability in the trapping position. These studies have significance both for the rigorous interpretation of data obtained using aerosol optical tweezers and for the modeling of aerosol optical traps.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  4. M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, “Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles,” in Optical Trapping and Optical Micromanipulation III, Proc. SPIE 6326, U489-U500 (2006).
  5. M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
    [CrossRef] [PubMed]
  6. A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073-1075 (1975).
    [CrossRef] [PubMed]
  7. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22, 816-818 (1997).
    [CrossRef] [PubMed]
  8. N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
    [CrossRef]
  9. M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710-16711 (2004).
    [CrossRef] [PubMed]
  10. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
    [CrossRef]
  11. A. Rohrbach, “Switching and measuring a force of 25 femtoNewtons with an optical trap,” Opt. Express 13, 9695-9701 (2005).
    [CrossRef] [PubMed]
  12. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
    [CrossRef] [PubMed]
  13. G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
    [CrossRef] [PubMed]
  14. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002).
    [CrossRef]
  15. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14, 4175-4181 (2006).
    [CrossRef] [PubMed]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  17. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes--an integral-representation: errata,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1605-1605 (1995).
    [CrossRef]
  18. N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
    [CrossRef]
  19. K. Visscher and G. J. Brakenhoff, “Theoretical-study of optically induced forces on spherical-particles in a single beam trap. 1. Rayleigh scatterers,” Optik (Stuttgart) 89, 174-180 (1992).
  20. T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
    [CrossRef]
  21. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
    [CrossRef]
  22. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994).
    [CrossRef] [PubMed]
  23. P. A. M. Neto and H. M. Nussenzveig, “Theory of optical tweezers,” EPL 50, 702-708 (2000).
    [CrossRef]
  24. A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London, Ser. A 459, 3021-3041 (2003).
    [CrossRef]
  25. D. Burnham, “Microscopic applications of holographic beam shaping and studies of optically trapped aerosols,” Ph.D. dissertation (University of St. Andrews, 2009).
  26. D. R. Burnham and D. McGloin are preparing a manuscript to be called “Modelling of optical traps for aerosols.”
  27. O. Farsund and B. U. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108-130 (1996).
    [CrossRef]
  28. K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
    [CrossRef]
  29. L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756-769 (2008).
    [CrossRef] [PubMed]
  30. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107-2113 (1997).
    [CrossRef] [PubMed]
  31. L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
    [CrossRef]
  32. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Opt. 45, 1812-1819 (2006).
    [CrossRef] [PubMed]
  33. H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018-1023 (1990).
    [CrossRef]
  34. R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham, and J. P. Reid, “Determination and validation of water droplet size distributions probed by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 5, 3732-3739 (2003).
    [CrossRef]
  35. D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys. 11, 063022 (2009).
    [CrossRef]
  36. E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584-1586 (1995).
    [CrossRef]
  37. J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
    [CrossRef] [PubMed]
  38. J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481, 153-165 (2009).
    [CrossRef]
  39. L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785-787 (1999).
    [CrossRef]
  40. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica (Amsterdam) 7, 284-304 (1940).
    [CrossRef]

2009 (2)

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys. 11, 063022 (2009).
[CrossRef]

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

2008 (3)

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
[CrossRef] [PubMed]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756-769 (2008).
[CrossRef] [PubMed]

M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
[CrossRef] [PubMed]

2007 (2)

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
[CrossRef]

2006 (6)

L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
[CrossRef]

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, “Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles,” in Optical Trapping and Optical Micromanipulation III, Proc. SPIE 6326, U489-U500 (2006).

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Opt. 45, 1812-1819 (2006).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14, 4175-4181 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710-16711 (2004).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

2003 (4)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
[CrossRef]

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London, Ser. A 459, 3021-3041 (2003).
[CrossRef]

R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham, and J. P. Reid, “Determination and validation of water droplet size distributions probed by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 5, 3732-3739 (2003).
[CrossRef]

2002 (1)

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

2000 (1)

P. A. M. Neto and H. M. Nussenzveig, “Theory of optical tweezers,” EPL 50, 702-708 (2000).
[CrossRef]

1999 (1)

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785-787 (1999).
[CrossRef]

1998 (1)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

1997 (2)

1996 (1)

O. Farsund and B. U. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108-130 (1996).
[CrossRef]

1995 (2)

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes--an integral-representation: errata,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1605-1605 (1995).
[CrossRef]

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584-1586 (1995).
[CrossRef]

1994 (2)

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

1992 (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

K. Visscher and G. J. Brakenhoff, “Theoretical-study of optically induced forces on spherical-particles in a single beam trap. 1. Rayleigh scatterers,” Optik (Stuttgart) 89, 174-180 (1992).

1990 (1)

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018-1023 (1990).
[CrossRef]

1986 (1)

1975 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073-1075 (1975).
[CrossRef] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

1940 (1)

H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica (Amsterdam) 7, 284-304 (1940).
[CrossRef]

Almqvist, F.

M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
[CrossRef] [PubMed]

Andersson, M.

M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
[CrossRef] [PubMed]

M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, “Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles,” in Optical Trapping and Optical Micromanipulation III, Proc. SPIE 6326, U489-U500 (2006).

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073-1075 (1975).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Axner, O.

M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
[CrossRef] [PubMed]

M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, “Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles,” in Optical Trapping and Optical Micromanipulation III, Proc. SPIE 6326, U489-U500 (2006).

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107-2113 (1997).
[CrossRef] [PubMed]

Bar-Ziv, R.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Berns, M. W.

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Booker, G. R.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes--an integral-representation: errata,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1605-1605 (1995).
[CrossRef]

Brakenhoff, G. J.

K. Visscher and G. J. Brakenhoff, “Theoretical-study of optically induced forces on spherical-particles in a single beam trap. 1. Rayleigh scatterers,” Optik (Stuttgart) 89, 174-180 (1992).

Buajarern, J.

L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
[CrossRef]

Burnham, D.

D. Burnham, “Microscopic applications of holographic beam shaping and studies of optically trapped aerosols,” Ph.D. dissertation (University of St. Andrews, 2009).

Burnham, D. R.

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys. 11, 063022 (2009).
[CrossRef]

D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14, 4175-4181 (2006).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin are preparing a manuscript to be called “Modelling of optical traps for aerosols.”

Butler, J. R.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
[CrossRef] [PubMed]

Campillo, A. J.

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018-1023 (1990).
[CrossRef]

Chu, S.

Dykman, M.

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785-787 (1999).
[CrossRef]

Dziedzic, J. M.

Eversole, J. D.

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018-1023 (1990).
[CrossRef]

Fällman, E.

M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
[CrossRef] [PubMed]

M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, “Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles,” in Optical Trapping and Optical Micromanipulation III, Proc. SPIE 6326, U489-U500 (2006).

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107-2113 (1997).
[CrossRef] [PubMed]

Farsund, O.

O. Farsund and B. U. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108-130 (1996).
[CrossRef]

Felderhof, B. U.

O. Farsund and B. U. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108-130 (1996).
[CrossRef]

Gatherer, R. D. B.

R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham, and J. P. Reid, “Determination and validation of water droplet size distributions probed by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 5, 3732-3739 (2003).
[CrossRef]

Gilham, R. J. J.

R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham, and J. P. Reid, “Determination and validation of water droplet size distributions probed by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 5, 3732-3739 (2003).
[CrossRef]

Golding, B.

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785-787 (1999).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Hanford, K. L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
[CrossRef] [PubMed]

K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
[CrossRef]

Hayata, E.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
[CrossRef]

Heckenberg, N. R.

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

Hopkins, R. J.

L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Hudson, A. J.

K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
[CrossRef]

King, M. D.

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710-16711 (2004).
[CrossRef] [PubMed]

Knöner, G.

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

Knox, K. J.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
[CrossRef]

Kobayashi, T.

Kohira, M. I.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
[CrossRef]

Kramers, H. A.

H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica (Amsterdam) 7, 284-304 (1940).
[CrossRef]

Laczik, Z.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes--an integral-representation: errata,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1605-1605 (1995).
[CrossRef]

Lin, H. B.

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018-1023 (1990).
[CrossRef]

Lyons, E. R.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584-1586 (1995).
[CrossRef]

Magome, N.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
[CrossRef]

Mazolli, A.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London, Ser. A 459, 3021-3041 (2003).
[CrossRef]

McCann, L. I.

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785-787 (1999).
[CrossRef]

McGloin, D.

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys. 11, 063022 (2009).
[CrossRef]

D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14, 4175-4181 (2006).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin are preparing a manuscript to be called “Modelling of optical traps for aerosols.”

Meller, A.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Mesquita, O. N.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

Mitchem, L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
[CrossRef] [PubMed]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756-769 (2008).
[CrossRef] [PubMed]

K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
[CrossRef]

L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Molloy, J. E.

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

Mukai, S.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
[CrossRef]

Neto, P. A. M.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London, Ser. A 459, 3021-3041 (2003).
[CrossRef]

P. A. M. Neto and H. M. Nussenzveig, “Theory of optical tweezers,” EPL 50, 702-708 (2000).
[CrossRef]

Nieminen, T. A.

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

Nussenzveig, H. M.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London, Ser. A 459, 3021-3041 (2003).
[CrossRef]

P. A. M. Neto and H. M. Nussenzveig, “Theory of optical tweezers,” EPL 50, 702-708 (2000).
[CrossRef]

Omori, R.

Padgett, M. J.

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

Parkin, S.

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

Reid, J. P.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
[CrossRef] [PubMed]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756-769 (2008).
[CrossRef] [PubMed]

K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
[CrossRef]

L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham, and J. P. Reid, “Determination and validation of water droplet size distributions probed by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 5, 3732-3739 (2003).
[CrossRef]

Rocha, M. S.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

Rohrbach, A.

Rubinsztein-Dunlop, H.

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

Sayer, R. M.

R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham, and J. P. Reid, “Determination and validation of water droplet size distributions probed by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 5, 3732-3739 (2003).
[CrossRef]

Schmidt, C. F.

Sonek, G. J.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584-1586 (1995).
[CrossRef]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994).
[CrossRef] [PubMed]

Stienen, G. J. M.

Suzuki, A.

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Thompson, K. C.

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710-16711 (2004).
[CrossRef] [PubMed]

Tlusty, T.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Török, P.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes--an integral-representation: errata,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1605-1605 (1995).
[CrossRef]

Treuel, L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
[CrossRef] [PubMed]

Uhlin, B. E.

M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
[CrossRef] [PubMed]

M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, “Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles,” in Optical Trapping and Optical Micromanipulation III, Proc. SPIE 6326, U489-U500 (2006).

Varga, P.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes--an integral-representation: errata,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1605-1605 (1995).
[CrossRef]

Vermeulen, K. C.

Viana, N. B.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

Visscher, K.

K. Visscher and G. J. Brakenhoff, “Theoretical-study of optically induced forces on spherical-particles in a single beam trap. 1. Rayleigh scatterers,” Optik (Stuttgart) 89, 174-180 (1992).

Ward, A. D.

L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
[CrossRef]

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710-16711 (2004).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Wills, J. B.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

Wright, W. H.

Wuite, G. J. L.

Yoshikawa, K.

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006).
[CrossRef]

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584-1586 (1995).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chem. Phys. Lett. 432, 362-366 (2006).
[CrossRef]

Chem. Soc. Rev. (1)

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756-769 (2008).
[CrossRef] [PubMed]

ChemPhysChem (1)

M. Andersson, O. Axner, F. Almqvist, B. E. Uhlin, and E. Fällman, “Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili,” ChemPhysChem 9, 221-235 (2008).
[CrossRef] [PubMed]

Contemp. Phys. (1)

J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

EPL (1)

P. A. M. Neto and H. M. Nussenzveig, “Theory of optical tweezers,” EPL 50, 702-708 (2000).
[CrossRef]

Faraday Discuss. (1)

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351-366 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710-16711 (2004).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A, Pure Appl. Opt. 9, S180-S188 (2007).
[CrossRef]

J. Opt. Soc. Am. A Opt. Image Sci. Vis. (1)

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes--an integral-representation: errata,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1605-1605 (1995).
[CrossRef]

J. Phys. Chem. B (1)

N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” J. Phys. Chem. B 107, 3988-3990 (2003).
[CrossRef]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785-787 (1999).
[CrossRef]

New J. Phys. (1)

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys. 11, 063022 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Optik (Stuttgart) (1)

K. Visscher and G. J. Brakenhoff, “Theoretical-study of optically induced forces on spherical-particles in a single beam trap. 1. Rayleigh scatterers,” Optik (Stuttgart) 89, 174-180 (1992).

Phys. Chem. Chem. Phys. (2)

R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham, and J. P. Reid, “Determination and validation of water droplet size distributions probed by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 5, 3732-3739 (2003).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Phys. Rev. E (1)

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

Physica (Amsterdam) (1)

H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica (Amsterdam) 7, 284-304 (1940).
[CrossRef]

Physica A (1)

O. Farsund and B. U. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108-130 (1996).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London, Ser. A 459, 3021-3041 (2003).
[CrossRef]

Proc. SPIE (1)

M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, “Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles,” in Optical Trapping and Optical Micromanipulation III, Proc. SPIE 6326, U489-U500 (2006).

Rev. Sci. Instrum. (1)

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018-1023 (1990).
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073-1075 (1975).
[CrossRef] [PubMed]

Other (2)

D. Burnham, “Microscopic applications of holographic beam shaping and studies of optically trapped aerosols,” Ph.D. dissertation (University of St. Andrews, 2009).

D. R. Burnham and D. McGloin are preparing a manuscript to be called “Modelling of optical traps for aerosols.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

A comparison of the media through which the trapping beam must travel for (a) condensed phase optical tweezers, (b) the vertical AOT configuration, and (c) the horizontal AOT configuration.

Fig. 2
Fig. 2

Side image of an optically tweezed aqueous droplet (radius of approximately 5 μ m ) above a borosilicate coverslip. The reflection of the droplet in the coverslip can be seen in the lower half of the image. A smaller droplet resting on the coverslip surface, along with its reflection, can be seen at the right-hand side of the image, defining the horizontal position of the coverslip, shown here with a dotted line.

Fig. 3
Fig. 3

Top-view schematic illustration of the horizontal trapping configuration.

Fig. 4
Fig. 4

Images of a trapped aqueous NaCl droplet imaged through the trapping objective (left) and the additional imaging objective (right) onto the single camera. The x, y, and z directions labeled relate to those indicated in Fig. 3. The axial direction of trapping beam propagation, and the axis in which the droplet oscillation occurs, is labeled z.

Fig. 5
Fig. 5

Two stable positions for a droplet of radius 3.86 μ m , separated by 3.8 ± 0.2 μ m . The laser power is 35   mW . The centers of the droplet reflections have been set to the same vertical level. A guide of fixed length has been added to the images.

Fig. 6
Fig. 6

The force acting on a trapped droplet of radius 3.86 μ m as a function of displacement from the paraxial laser focus, modeled for droplet refractive indices of (a) 1.34, 1.36, and 1.38, shown as black, dashed black, and light gray lines, respectively. (b) 1.3640, 1.3645, and 1.3650, shown as black, dashed black, and light gray lines, respectively.

Fig. 7
Fig. 7

The force acting on a trapped droplet of radius 3.86 μ m as a function of displacement from the paraxial laser focus, modeled for a droplet refractive index of 1.3645 and for an aqueous layer with a composition of 0.34 M NaCl and with thicknesses of 2, 5, 10, 15, and 20 μ m shown by lines starting left to right at low displacement and changing from gray to black, respectively.

Fig. 8
Fig. 8

The variation in the z-position of the droplet (in camera pixels) with time: (a) a droplet showing a single transition between two stable trapping positions and (b) a droplet showing continuous transitions between the two stable trapping positions.

Fig. 9
Fig. 9

The variation in the z-position of a droplet (in camera pixels), which shows a clear fluctuation in the transition frequency with time.

Fig. 10
Fig. 10

(a) z-position of oscillating droplet, radius of 3.5 μ m in the horizontal trapping geometry. (b) as (a), but only showing the first 10 s.

Fig. 11
Fig. 11

The probability of finding the droplet in each of the two stable z-positions in the horizontal trapping geometry. The bistable nature of the potential energy of the droplet-laser system is evident.

Fig. 12
Fig. 12

The force acting on a trapped droplet of radius 3.5 μ m in the horizontal trapping geometry as a function of displacement from the laser focus, modeled for droplet refractive indices of 1.34, 1.36, and 1.38, shown as black, dashed black, and light gray lines, respectively.

Metrics