Abstract

We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Erlacher, H. Miller, and B. Ullrich, “Low-power all-optical switch by superposition of red and green laser irradiation in thin-film cadmium sulfide on glass,” J. Appl. Phys. 95, 2927-2929 (2004).
    [CrossRef]
  2. S. Ammar, T. Joseph, and M. Pascal, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
    [CrossRef]
  3. Y.-D. Wu, T.-T. Shih, and M.-H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008).
    [CrossRef] [PubMed]
  4. B. S. Larkin, in Lasers and Electro-optics Research at the Cutting Edge (Nova, 2006).
  5. M. Graham, D. Gavin, M. Jeffries, and T. C. Daniel, “Tunable generation of Bessel beams with a fluidic axicon,” J. Appl. Phys. 92, 261101 (2008).
  6. B. S. Chen, and J. X. Pu, “Propagation of Gauss-Bessel beams in turbulent atmosphere,” Chin. Phys. B 18, 1033-1039 (2009).
    [CrossRef]
  7. T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024-14035 (2008).
    [CrossRef] [PubMed]
  8. S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
    [CrossRef]
  9. J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbits/s all-optical multicasting logic XOR gates for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282, 2615-2619 (2009).
    [CrossRef]
  10. M. Yuji, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, K.-I. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16, 2570-2577 (2008).
    [CrossRef]
  11. T. Huiping, “Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate,” J. Phys. B 40, 1391-1402 (2007).
    [CrossRef]

2010

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

2009

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbits/s all-optical multicasting logic XOR gates for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282, 2615-2619 (2009).
[CrossRef]

B. S. Chen, and J. X. Pu, “Propagation of Gauss-Bessel beams in turbulent atmosphere,” Chin. Phys. B 18, 1033-1039 (2009).
[CrossRef]

2008

2007

T. Huiping, “Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate,” J. Phys. B 40, 1391-1402 (2007).
[CrossRef]

2006

S. Ammar, T. Joseph, and M. Pascal, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

2004

A. Erlacher, H. Miller, and B. Ullrich, “Low-power all-optical switch by superposition of red and green laser irradiation in thin-film cadmium sulfide on glass,” J. Appl. Phys. 95, 2927-2929 (2004).
[CrossRef]

Ammar, S.

S. Ammar, T. Joseph, and M. Pascal, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

Bouchal, Z.

Chen, B. S.

B. S. Chen, and J. X. Pu, “Propagation of Gauss-Bessel beams in turbulent atmosphere,” Chin. Phys. B 18, 1033-1039 (2009).
[CrossRef]

Chen, M.-H.

Cizmar, T.

Daniel, T. C.

M. Graham, D. Gavin, M. Jeffries, and T. C. Daniel, “Tunable generation of Bessel beams with a fluidic axicon,” J. Appl. Phys. 92, 261101 (2008).

Dholakia, K.

Erlacher, A.

A. Erlacher, H. Miller, and B. Ullrich, “Low-power all-optical switch by superposition of red and green laser irradiation in thin-film cadmium sulfide on glass,” J. Appl. Phys. 95, 2927-2929 (2004).
[CrossRef]

Gavin, D.

M. Graham, D. Gavin, M. Jeffries, and T. C. Daniel, “Tunable generation of Bessel beams with a fluidic axicon,” J. Appl. Phys. 92, 261101 (2008).

Graham, M.

M. Graham, D. Gavin, M. Jeffries, and T. C. Daniel, “Tunable generation of Bessel beams with a fluidic axicon,” J. Appl. Phys. 92, 261101 (2008).

Gunn-Moore, F.

Hadiya, V. M.

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Huiping, T.

T. Huiping, “Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate,” J. Phys. B 40, 1391-1402 (2007).
[CrossRef]

Ikeda, K.

Inoue, T.

Jeffries, M.

M. Graham, D. Gavin, M. Jeffries, and T. C. Daniel, “Tunable generation of Bessel beams with a fluidic axicon,” J. Appl. Phys. 92, 261101 (2008).

Joseph, S. A.

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Joseph, T.

S. Ammar, T. Joseph, and M. Pascal, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

Kitayama, K.-I.

Kollarova, V.

Larkin, B. S.

B. S. Larkin, in Lasers and Electro-optics Research at the Cutting Edge (Nova, 2006).

Mathew, S.

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Miller, H.

A. Erlacher, H. Miller, and B. Ullrich, “Low-power all-optical switch by superposition of red and green laser irradiation in thin-film cadmium sulfide on glass,” J. Appl. Phys. 95, 2927-2929 (2004).
[CrossRef]

Misha, H.

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Namiki, S.

Nampoori, V. P. N.

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Pascal, M.

S. Ammar, T. Joseph, and M. Pascal, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

Pu, J. X.

B. S. Chen, and J. X. Pu, “Propagation of Gauss-Bessel beams in turbulent atmosphere,” Chin. Phys. B 18, 1033-1039 (2009).
[CrossRef]

Radhakrishnan, P.

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Sharma, G.

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Shih, T.-T.

Sibbett, W.

Soumya,

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

Sun, J.

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbits/s all-optical multicasting logic XOR gates for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282, 2615-2619 (2009).
[CrossRef]

Sun, Q.

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbits/s all-optical multicasting logic XOR gates for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282, 2615-2619 (2009).
[CrossRef]

Tobioka, H.

Tsampoula, X.

Ullrich, B.

A. Erlacher, H. Miller, and B. Ullrich, “Low-power all-optical switch by superposition of red and green laser irradiation in thin-film cadmium sulfide on glass,” J. Appl. Phys. 95, 2927-2929 (2004).
[CrossRef]

Wang, J.

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbits/s all-optical multicasting logic XOR gates for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282, 2615-2619 (2009).
[CrossRef]

Wu, Y.-D.

Yuji, M.

Zhang, X.

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbits/s all-optical multicasting logic XOR gates for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282, 2615-2619 (2009).
[CrossRef]

Chin. Phys. B

B. S. Chen, and J. X. Pu, “Propagation of Gauss-Bessel beams in turbulent atmosphere,” Chin. Phys. B 18, 1033-1039 (2009).
[CrossRef]

J. Appl. Phys.

A. Erlacher, H. Miller, and B. Ullrich, “Low-power all-optical switch by superposition of red and green laser irradiation in thin-film cadmium sulfide on glass,” J. Appl. Phys. 95, 2927-2929 (2004).
[CrossRef]

M. Graham, D. Gavin, M. Jeffries, and T. C. Daniel, “Tunable generation of Bessel beams with a fluidic axicon,” J. Appl. Phys. 92, 261101 (2008).

J. Phys. B

T. Huiping, “Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate,” J. Phys. B 40, 1391-1402 (2007).
[CrossRef]

Opt. Commun.

S. Ammar, T. Joseph, and M. Pascal, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

S. A. Joseph, H. Misha, S. Mathew, G. Sharma, Soumya, V. M. Hadiya, P. Radhakrishnan, and V. P. N. Nampoori, “Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique,” Opt. Commun. 283, 313-317 (2010).
[CrossRef]

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbits/s all-optical multicasting logic XOR gates for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282, 2615-2619 (2009).
[CrossRef]

Opt. Express

Other

B. S. Larkin, in Lasers and Electro-optics Research at the Cutting Edge (Nova, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photographs showing the conversion of a Gaussian beam to Bessel beams of various order depending on the magnitudes of the phase modulation induced by the optical beam.

Fig. 2
Fig. 2

Absorption spectrum and XRD of gold nanoparticles in water.

Fig. 3
Fig. 3

Logic 1 and logic 0 are interpreted as the probe beam intensity measured by the detector. When the pump is off (logic 0 input) the probe beam does not diverge, resulting in logic 1 output.

Fig. 4
Fig. 4

(a) Oscilloscope traces showing square pulses from the pump and the corresponding probe beam. When the pump is high, probe is low. The traces were recorded before triggering. (b) Decay of the probe when pump is turned on. Probe reaches a steady state decided by the characteristic time constant.

Fig. 5
Fig. 5

(a) The probe beam amplitude versus time for pump-chopping frequency 6 Hz and (b) at chopping frequency 25 Hz . The switching time is less for the higher frequency.

Fig. 6
Fig. 6

(a) Oscilloscope traces showing the fast switching of the gate for ns pump. (b) The switching time is measured as the difference between the 90% and 10% of the maximum between the two straight lines marked on the graph. It is around 600 ns .

Tables (1)

Tables Icon

Table 1 Probe Beam Power Detected by the Photodetector (mV) for Various Input Power in mW a

Metrics