Abstract

Whispering gallery modes (WGMs) have been demonstrated in polystyrene microspheres embedded with quantum dots (QDs) in the periphery to serve as local light sources for the remote excitation of low Q-factor microsphere sensors. These sensors were shown to display varied WGM spectra and refractometric sensitivity exceeding that predicted for a homogeneous microsphere. To explain these differences from the basic Mie scattering theory, the QDs have been modeled as a thin high index outer layer. This model has been shown to provide a good fit of the observed WGM spectra, with calculated values for the QD layer refractive index and penetration depth falling within our observed estimates. The possible enhancement in sensitivity for these microspheres has also been determined.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  2. N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sens. Lett. 3, 315-319 (2005).
    [CrossRef]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591-596 (2008).
    [CrossRef] [PubMed]
  4. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
    [CrossRef] [PubMed]
  5. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105, 20701-20704 (2008).
    [CrossRef] [PubMed]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  7. A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561-567 (2008).
    [CrossRef]
  8. H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785-795 (2006).
    [CrossRef]
  9. H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974-1983 (2009).
    [CrossRef] [PubMed]
  10. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
    [CrossRef]
  11. L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001-1004 (1910).
  12. B. R. Johnson, “Theory of morphology-dependent resonances--shape resonances and width formulas,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10, 343-352 (1993).
    [CrossRef]
  13. G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377-445 (1908).
  14. P. Chylek, J. T. Kiehl, and M. K. W. Ko, “Narrow resonance structure in Mie scattering characteristics,” Appl. Opt. 17, 3019-3021 (1978).
    [CrossRef] [PubMed]
  15. S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P.W.Barber and R.K.Chang, eds. (World Scientific, 1988), pp. 3-61.
  16. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585-1592 (1992).
    [CrossRef]
  17. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381-1389 (2006).
    [CrossRef]
  18. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937-1946 (2003).
    [CrossRef]
  19. I. Teraoka and S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
    [CrossRef]
  20. I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434-1441 (2006).
    [CrossRef]
  21. I. Teraoka and S. Arnold, “Coupled whispering gallery modes in a multilayer-coated microsphere,” Opt. Lett. 32, 1147-1149 (2007).
    [CrossRef] [PubMed]
  22. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653-659 (2007).
    [CrossRef]
  23. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
    [CrossRef]
  24. I. M. White, N. M. Hanumegowda, and X. D. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005).
    [CrossRef] [PubMed]
  25. E. Nuhiji and P. Mulvaney, “Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres,” Small 3, 1408-1414 (2007).
    [CrossRef] [PubMed]
  26. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
    [CrossRef]
  27. W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018 (1998).
    [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Chap. IV, p. 101.
    [CrossRef]
  29. J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1, 822-830 (1984).
    [CrossRef]
  30. Z. A. Peng and X. G. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123, 183-184 (2001).
    [CrossRef] [PubMed]
  31. X. H. Gao and S. M. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76, 2406-2410 (2004).
    [CrossRef] [PubMed]
  32. X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
    [CrossRef]
  33. K. Suzuki and S. Adachi, “Optical constants of CdxZn1−xSe ternary alloys,” J. Appl. Phys. 83, 1018-1022 (1998).
    [CrossRef]

2009 (2)

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974-1983 (2009).
[CrossRef] [PubMed]

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

2008 (4)

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561-567 (2008).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105, 20701-20704 (2008).
[CrossRef] [PubMed]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

2007 (4)

E. Nuhiji and P. Mulvaney, “Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres,” Small 3, 1408-1414 (2007).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653-659 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Coupled whispering gallery modes in a multilayer-coated microsphere,” Opt. Lett. 32, 1147-1149 (2007).
[CrossRef] [PubMed]

2006 (4)

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381-1389 (2006).
[CrossRef]

I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785-795 (2006).
[CrossRef]

2005 (2)

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sens. Lett. 3, 315-319 (2005).
[CrossRef]

I. M. White, N. M. Hanumegowda, and X. D. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005).
[CrossRef] [PubMed]

2004 (1)

X. H. Gao and S. M. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76, 2406-2410 (2004).
[CrossRef] [PubMed]

2003 (4)

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937-1946 (2003).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

2001 (1)

Z. A. Peng and X. G. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123, 183-184 (2001).
[CrossRef] [PubMed]

1998 (2)

K. Suzuki and S. Adachi, “Optical constants of CdxZn1−xSe ternary alloys,” J. Appl. Phys. 83, 1018-1022 (1998).
[CrossRef]

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

1993 (1)

B. R. Johnson, “Theory of morphology-dependent resonances--shape resonances and width formulas,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10, 343-352 (1993).
[CrossRef]

1992 (1)

1984 (1)

J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1, 822-830 (1984).
[CrossRef]

1978 (1)

1910 (1)

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001-1004 (1910).

1908 (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377-445 (1908).

Adachi, S.

K. Suzuki and S. Adachi, “Optical constants of CdxZn1−xSe ternary alloys,” J. Appl. Phys. 83, 1018-1022 (1998).
[CrossRef]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105, 20701-20704 (2008).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653-659 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Coupled whispering gallery modes in a multilayer-coated microsphere,” Opt. Lett. 32, 1147-1149 (2007).
[CrossRef] [PubMed]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381-1389 (2006).
[CrossRef]

I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937-1946 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Beckham, R. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

Beier, H. T.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974-1983 (2009).
[CrossRef] [PubMed]

Benner, R. E.

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P.W.Barber and R.K.Chang, eds. (World Scientific, 1988), pp. 3-61.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Chap. IV, p. 101.
[CrossRef]

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Brock, R. S.

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Chan, W. C. W.

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

Chylek, P.

Coté, G. L.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974-1983 (2009).
[CrossRef] [PubMed]

Culic-Viskota, J.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Dahint, R.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561-567 (2008).
[CrossRef]

Fan, X. D.

H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785-795 (2006).
[CrossRef]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sens. Lett. 3, 315-319 (2005).
[CrossRef]

I. M. White, N. M. Hanumegowda, and X. D. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005).
[CrossRef] [PubMed]

Francois, A.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

Gaathon, O.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Gao, X. H.

X. H. Gao and S. M. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76, 2406-2410 (2004).
[CrossRef] [PubMed]

Hanumegowda, N. M.

I. M. White, N. M. Hanumegowda, and X. D. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005).
[CrossRef] [PubMed]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sens. Lett. 3, 315-319 (2005).
[CrossRef]

Hill, S. C.

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P.W.Barber and R.K.Chang, eds. (World Scientific, 1988), pp. 3-61.

Himmelhaus, M.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561-567 (2008).
[CrossRef]

Holler, S.

Hu, X. H.

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Chap. IV, p. 101.
[CrossRef]

Jacobs, K. M.

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Johnson, B. R.

B. R. Johnson, “Theory of morphology-dependent resonances--shape resonances and width formulas,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10, 343-352 (1993).
[CrossRef]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105, 20701-20704 (2008).
[CrossRef] [PubMed]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Kiehl, J. T.

Ko, M. K. W.

Lam, C. C.

Leung, P. T.

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Liu, F. C.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561-567 (2008).
[CrossRef]

Lu, J. Q.

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Ma, X. Y.

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Meissner, K. E.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974-1983 (2009).
[CrossRef] [PubMed]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

Mie, G.

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377-445 (1908).

Mihnev, M.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Mulvaney, P.

E. Nuhiji and P. Mulvaney, “Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres,” Small 3, 1408-1414 (2007).
[CrossRef] [PubMed]

Nie, S. M.

X. H. Gao and S. M. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76, 2406-2410 (2004).
[CrossRef] [PubMed]

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

Nuhiji, E.

E. Nuhiji and P. Mulvaney, “Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres,” Small 3, 1408-1414 (2007).
[CrossRef] [PubMed]

Oveys, H.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sens. Lett. 3, 315-319 (2005).
[CrossRef]

Pang, S.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

Peng, X. G.

Z. A. Peng and X. G. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123, 183-184 (2001).
[CrossRef] [PubMed]

Peng, Z. A.

Z. A. Peng and X. G. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123, 183-184 (2001).
[CrossRef] [PubMed]

Probert-Jones, J. R.

J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1, 822-830 (1984).
[CrossRef]

Rayleigh, L.

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001-1004 (1910).

Suter, J. D.

H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785-795 (2006).
[CrossRef]

Suzuki, K.

K. Suzuki and S. Adachi, “Optical constants of CdxZn1−xSe ternary alloys,” J. Appl. Phys. 83, 1018-1022 (1998).
[CrossRef]

Teraoka, I.

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653-659 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Coupled whispering gallery modes in a multilayer-coated microsphere,” Opt. Lett. 32, 1147-1149 (2007).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381-1389 (2006).
[CrossRef]

I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937-1946 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105, 20701-20704 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937-1946 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Weller, A.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561-567 (2008).
[CrossRef]

White, I. M.

H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785-795 (2006).
[CrossRef]

I. M. White, N. M. Hanumegowda, and X. D. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005).
[CrossRef] [PubMed]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sens. Lett. 3, 315-319 (2005).
[CrossRef]

Yang, P.

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Young, K.

Zhu, H. Y.

H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785-795 (2006).
[CrossRef]

Anal. Chem. (1)

X. H. Gao and S. M. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76, 2406-2410 (2004).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974-1983 (2009).
[CrossRef] [PubMed]

Ann. Phys. (Leipzig) (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377-445 (1908).

Appl. Opt. (1)

Appl. Phys. B (1)

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561-567 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

Z. A. Peng and X. G. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123, 183-184 (2001).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

K. Suzuki and S. Adachi, “Optical constants of CdxZn1−xSe ternary alloys,” J. Appl. Phys. 83, 1018-1022 (1998).
[CrossRef]

I. Teraoka and S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
[CrossRef]

J. Opt. Soc. Am. A Opt. Image Sci. Vis. (2)

J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1, 822-830 (1984).
[CrossRef]

B. R. Johnson, “Theory of morphology-dependent resonances--shape resonances and width formulas,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10, 343-352 (1993).
[CrossRef]

J. Opt. Soc. Am. B (5)

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Philos. Mag. (1)

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001-1004 (1910).

Phys. Med. Biol. (1)

X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105, 20701-20704 (2008).
[CrossRef] [PubMed]

Science (1)

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018 (1998).
[CrossRef] [PubMed]

Sens. Lett. (1)

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sens. Lett. 3, 315-319 (2005).
[CrossRef]

Sensors (1)

H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785-795 (2006).
[CrossRef]

Small (1)

E. Nuhiji and P. Mulvaney, “Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres,” Small 3, 1408-1414 (2007).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Chap. IV, p. 101.
[CrossRef]

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P.W.Barber and R.K.Chang, eds. (World Scientific, 1988), pp. 3-61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Various WGM spectra from 4.8 μ m QD embedded polystyrene microspheres demonstrating different spacing of TE and TM resonances. The TE peaks are identified as the larger in the pair of modes. In spectrum (d), the TE-TM modes are overlapped to produce one single peak.

Fig. 2
Fig. 2

Mie scattering efficiency for polystyrene microspheres in water spanning one standard deviation above and below the average microsphere size. The spacing within and between pairs of mode decreases with increasing microsphere size.

Fig. 3
Fig. 3

TE radial function for a 4.8 μ m radius homogenous polystyrene microsphere and a 4.8 μ m radius polystyrene microsphere embedded with a 30 nm QD outer layer consisting of approximately 25% QDs. The high index outer layer pushes the radial function closer to the microsphere surface, intensifying the evanescent field. Additionally the effective path length is lengthened, which increases the resonant wavelength for the same mode number.

Fig. 4
Fig. 4

WGM resonance variation with various QD layer thicknesses and refractive indices for a 4.8 μ m polystyrene microsphere in water. The positions of the TE modes are much more sensitive to the high index outer layer than the TM modes, thus pushing the TE modes closer to the TM modes of lower mode number. If the QD layer refractive index and thickness are high enough, two modes may actually overlap.

Fig. 5
Fig. 5

Top: Possible combinations of QD layer refractive indices and thickness to produce the indicated spectra. (a) For overlapping modes, the size of the microsphere is varied from 4.6, 4.8, and 5.0 μ m to demonstrate the limited dependence on layer thickness and refractive index on overall microsphere size for our range of microsphere sizes. Angular mode number was adjusted for these microspheres to produce resonances at the same approximate wavelength. (b) For the spectrum with the mode pairs visible, the microsphere size was 4.8 μ m with angular mode numbers of 79 and 80 for TM and TE modes, respectively. Bottom: WGM spectra with the mode positions obtained from the high refractive index model indicated. For (a), r = 4.83 μ m , m 3 = 1.85 , t = 37.5   nm . For (b), r = 5.01 μ m , m 3 = 1.7 , t = 41.5   nm .

Fig. 6
Fig. 6

Possible refractive index sensitivities for (a) TM and (b) TE modes from 4.8 μ m radius polystyrene microspheres with possible combinations of QD layer refractive indices and thicknesses.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d S l ( r ) d r 2 + [ k 2 m 2 ( r ) l ( l + 1 ) r 2 ] S l ( r ) = 0.
ψ l ( m k r ) = m k r j l ( m k r ) ,
χ l ( m k r ) = m r k n l ( m k r ) ,
m 1 ψ l ( m 1 k a ) ψ l ( m 1 k a ) = m 2 χ l ( m 2 k a ) χ l ( m 2 k a ) .
Q sca = 2 x 2 l = 1 ( 2 l + 1 ) ( | a l | 2 + | b l | 2 ) ,
b l = m ψ l ( x ) ψ l ( m x ) ψ l ( m x ) ψ l ( x ) m ξ l ( x ) ψ l ( m x ) ψ l ( m x ) ξ l ( x ) ,
p TE = m ψ l ( x ) ψ l ( m x ) ψ l ( m x ) ψ l ( x ) ,
q TE = m χ l ( x ) ψ l ( m x ) ψ l ( m x ) χ l ( x ) .
b l = p TE p TE + i q TE = p TE 2 p TE 2 + q TE 2 i p TE q TE p TE 2 + q TE 2 .
S l ( r ) = { A l ψ l ( m 1 k r ) , r < a t C l ψ l ( m 3 k r ) + D l χ l ( m 3 k r ) , a t < r < a B l χ l ( m 2 k r ) , a < r . }
m 2 χ l ( m 2 k a ) m 3 χ l ( m 2 k a ) = ( C l / D l ) ψ l ( m 3 k a ) + χ l ( m 3 k a ) ( C l / D l ) ψ l ( m 3 k a ) + χ l ( m 2 k a ) ,
C l D l = m 3 ψ l ( m 1 k ( a t ) ) χ l ( m 3 k ( a t ) ) m 1 ψ l ( m 1 k ( a t ) ) χ l ( m 3 k ( a t ) ) m 3 ψ l ( m 1 k ( a t ) ) ψ l ( m 3 k ( a t ) ) + m 1 ψ l ( m 1 k ( a t ) ) ψ l ( m 3 k ( a t ) ) .

Metrics