Abstract

A multifunctional cross waveguide is designed based on the photonic crystal structure and the liquid crystal material. The different states of the cross waveguide controlled by the electric field make its various functions possible, including a switch with a high extinction ratio, a splitter that divides the terahertz wave into the desired proportions, and a through or 90° turn waveguide. The plane wave expansion method is used to calculate the bandgap in the photonic crystals, and coupling mode theory is adopted to analyze and eliminate the reflection loss. The finite element method is used to get the proper distribution of the external electric field. The properties of the cross waveguide are simulated by the finite difference time domain method, and the results show that the cross waveguide is a multifunctional device with high performance characteristics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.
  2. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974-976 (2008).
    [CrossRef] [PubMed]
  3. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  4. C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
    [CrossRef] [PubMed]
  5. A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008).
    [CrossRef]
  6. T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
    [CrossRef]
  7. R. X. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007).
    [CrossRef]
  8. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
    [CrossRef]
  9. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Opt. 46, 7884-7888 (2007).
    [CrossRef] [PubMed]
  10. C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995-3001 (2008).
    [CrossRef] [PubMed]
  11. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  12. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
    [CrossRef] [PubMed]
  13. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004).
    [CrossRef]
  14. C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express 12, 5723-5728 (2004).
    [CrossRef] [PubMed]
  15. Y. Zhang, Z. J. Li, and B. J. Li, “Multimode interference effect and self-imaging principle in two-dimensional photonic crystals waveguides for terahertz waves,” Opt. Express 14, 2679-2688 (2006).
    [CrossRef] [PubMed]
  16. L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680-682 (2007).
    [CrossRef] [PubMed]
  17. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14, 2839-2844 (2006).
    [CrossRef] [PubMed]
  18. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29, 2858-2860 (2004).
    [CrossRef]
  19. J. S. Li, J. L. He, and Z. Hong, “Terahertz wave switch based on silicon photonic crystals,” Appl. Opt. 46, 5034-5037 (2007).
    [CrossRef] [PubMed]
  20. H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101-106 (2008).
    [CrossRef]
  21. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
    [CrossRef]
  22. D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  23. S. H. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162-165 (2001).
    [CrossRef]
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  25. H. Y. Wu, Cho-Fan Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
    [CrossRef]
  26. J. E. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulator Software and Technology Guide (Artech House, 2001).
  27. Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
    [CrossRef]
  28. H. J. Deuling, “Elasticity of nematic liquid crystals,” in Liquid Crystals, L. Liebert, ed. (Academic, 1978), pp. 77-107.
  29. T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “THz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42, 2372-2376 (2003).
    [CrossRef] [PubMed]

2008 (5)

A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
[CrossRef]

C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995-3001 (2008).
[CrossRef] [PubMed]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974-976 (2008).
[CrossRef] [PubMed]

H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101-106 (2008).
[CrossRef]

2007 (5)

2006 (5)

H. Y. Wu, Cho-Fan Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Y. Zhang, Z. J. Li, and B. J. Li, “Multimode interference effect and self-imaging principle in two-dimensional photonic crystals waveguides for terahertz waves,” Opt. Express 14, 2679-2688 (2006).
[CrossRef] [PubMed]

E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14, 2839-2844 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

2004 (3)

2003 (2)

2001 (2)

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

S. H. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162-165 (2001).
[CrossRef]

1990 (1)

Adebimpe, D.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.

Akiyama, K.

R. X. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007).
[CrossRef]

Anderson, J. E.

J. E. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulator Software and Technology Guide (Artech House, 2001).

Averitt, R. D.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Baraniuk, R. G.

Bos, P. J.

J. E. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulator Software and Technology Guide (Artech House, 2001).

Busch, K.

Carr, G. L.

Chan, W. L.

Chang, S. J.

Chen, C.

Chen, C. Y.

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Chen, J.

C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
[CrossRef] [PubMed]

Chen, P.

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Dawson, P.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Deuling, H. J.

H. J. Deuling, “Elasticity of nematic liquid crystals,” in Liquid Crystals, L. Liebert, ed. (Academic, 1978), pp. 77-107.

Exter, M. V.

Fan, S. H.

Fattinger, C.

Fekete, L.

Ghattan, Z.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
[CrossRef]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

Guo, P.

Guo, R. X.

R. X. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007).
[CrossRef]

Ha, Y. K.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Hasek, T.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
[CrossRef]

Haus, H. A.

He, J. L.

Hein, G.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Hermann, D.

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Hils, A. A. B.

T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Homes, C. C.

Hong, Z.

Hsieh, C. F.

Hsieh, Cho-Fan

H. Y. Wu, Cho-Fan Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

Ibraheem, A.

A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008).
[CrossRef]

Ito, H.

R. X. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kadlec, F.

Kang, L.

C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
[CrossRef] [PubMed]

Kawase, K.

Kee, C. S.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Keenan, E.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.

Keiding, S.

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Kim, J. E.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Kirkland, L. V.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.

Kivshar, Y. S.

Kleine-Ostmann, T.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Koch, M.

A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Krumbholz, N.

A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008).
[CrossRef]

Kuzel, P.

LaVeigne, J. D.

Lee, J. C.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Li, B. J.

Li, J. S.

Li, Y. T.

Li, Z. J.

Lim, H.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Lin, C.

Lin, C. J.

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Lobo, R. P. S. M.

Löffler, T.

T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Manolatou, C.

May, T.

T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Minamide, H.

R. X. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007).
[CrossRef]

Mingaleev, S. F.

Miroshnichenko, E.

Mittleman, D.

A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008).
[CrossRef]

Mittleman, D. M.

Moravec, M. L.

Mulligan, R.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.

Nemec, H.

Ogawa, Y.

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Pan, C. L.

Pan, R. P.

Park, H. Y.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Pinkevych, I.

Prather, D. W.

Roskos, H. G.

T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Schillinger, M.

Schneider, G. J.

Shahabadi, M.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
[CrossRef]

Sharkawy, A.

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Shi, S.

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Tang, T. T.

H. Y. Wu, Cho-Fan Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

Tanner, D. B.

Taylor, A. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Tsai, T. R.

Wang, Y. Y.

C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
[CrossRef] [PubMed]

Watanabe, Y.

Watson, P. E.

J. E. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulator Software and Technology Guide (Artech House, 2001).

Weg, C. A.

T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Wilk, R.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
[CrossRef]

Wright, R. G.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.

Wu, H. Y.

H. Y. Wu, Cho-Fan Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

Wu, P. H.

C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
[CrossRef] [PubMed]

Xu, W. W.

C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
[CrossRef] [PubMed]

Yang, Y. C.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Yao, P.

Yuan, J. H.

Zgol, M.

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.

Zhang, C. H.

C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
[CrossRef] [PubMed]

Zhang, H.

Zhang, X. C.

Zhang, Y.

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

R. X. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007).
[CrossRef]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Y. Wu, Cho-Fan Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Other (5)

C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426.
[CrossRef] [PubMed]

R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

J. E. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulator Software and Technology Guide (Artech House, 2001).

H. J. Deuling, “Elasticity of nematic liquid crystals,” in Liquid Crystals, L. Liebert, ed. (Academic, 1978), pp. 77-107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Band structure for photonic crystals: (a) n e = 1.75 , (b) n o = 1.53 .

Fig. 2
Fig. 2

Band structure of the defect mode: (a) n e = 1.75 (b) n o = 1.53 .

Fig. 3
Fig. 3

Structure of the cross waveguide. (a) Outline of the device. The projecting parts are large enough to cover one silicon rod. The inset shows the profile of the additional silicon rods. (b) Theoretical model.

Fig. 4
Fig. 4

Gray scales show the different electric potentials, and the solid curves are the contours that indicate an external electric field equal to 2200 V m : (a) cross state, (b) through state, (c) turning state.

Fig. 5
Fig. 5

(a) Directions of liquid crystal molecules in different potentials, shown by the small rectangles. (b) Directions of liquid crystal molecules when the external field changes from 0 to 6 V .

Fig. 6
Fig. 6

Spectrum in the splitter state (a) with extra rods in the resonator, (b) without extra rods in the resonator.

Fig. 7
Fig. 7

Electric field in the different states of the cross waveguide. The regions surrounded by the solid lines indicate that the refractive index is different from that of the other regions. (a) Shut state, (b) splitter state, (c) through state, (d) turning state.

Tables (2)

Tables Icon

Table 1 Potential of Different Electrodes in Each State (Volts)

Tables Icon

Table 2 Adjustment of Transmission Ratio by Changing the Radii of Silicon Rods in the Resonator

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ω a 2 π c = a λ = 0.31 ,
a = 0.31 × λ = 93 μ m .
d E d t = j ω 0 E E ( i 1 τ i ) + i ( S + i 2 τ i ) ,
S i = S + i + 2 τ i E .
R = | S 1 S + 1 | 2 = | j ( ω ω 0 ) + 1 τ 1 1 τ 2 1 τ 3 1 τ 4 j ( ω + ω 0 ) + 1 τ 1 + 1 τ 2 + 1 τ 3 + 1 τ 4 | 2 ,
T k = | S k S + 1 | 2 = | 2 τ 1 τ k j ( ω + ω 0 ) + 1 τ 1 + 1 τ 2 + 1 τ 3 + 1 τ 4 | 2 , k = 2 , 3 , 4.
1 τ 1 = 1 τ 2 + 1 τ 3 + 1 τ 4 .
T 2 : T 3 : T 4 = 2 : 1 : 1.
1 τ 1 : 1 τ 2 : 1 τ 3 : 1 τ 4 = 4 : 2 : 1 : 1.

Metrics