Abstract

A multifunctional cross waveguide is designed based on the photonic crystal structure and the liquid crystal material. The different states of the cross waveguide controlled by the electric field make its various functions possible, including a switch with a high extinction ratio, a splitter that divides the terahertz wave into the desired proportions, and a through or 90° turn waveguide. The plane wave expansion method is used to calculate the bandgap in the photonic crystals, and coupling mode theory is adopted to analyze and eliminate the reflection loss. The finite element method is used to get the proper distribution of the external electric field. The properties of the cross waveguide are simulated by the finite difference time domain method, and the results show that the cross waveguide is a multifunctional device with high performance characteristics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription