Abstract

A nearly omnidirectional THz absorber for both transverse electric (TE) and transverse magnetic (TM) polarizations is proposed. Through the excitation of the magnetic polariton in a metal-dielectric layer, the incident light is perfectly absorbed in a thin thickness that is about 25 times smaller than the resonance wavelength. By simply stacking several such structural layers with different geometrical dimensions, the bandwidth of this strong absorption can be effectively enhanced due to the hybridization of magnetic polaritons in different layers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Mauskopf, J. J. Bock, H. Del Castillo, W. L. Holzapfel, and A. E. Lange, “Composite infrared bolometers with Si3N4 micromesh absorbers,” Appl. Opt. 36, 765-771 (1997).
    [CrossRef] [PubMed]
  2. A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
    [CrossRef]
  3. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
    [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  5. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431-436 (1976).
    [CrossRef]
  6. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004).
    [CrossRef]
  7. W. C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
    [CrossRef]
  8. E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33, 5214-5219 (1994).
    [CrossRef] [PubMed]
  9. Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95, 165003 (2005).
    [CrossRef] [PubMed]
  10. J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001).
    [CrossRef]
  11. E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).
  12. W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. Patent No. 2,599,944 (1952).
  13. N. Engheta, “Thin absorbing screens using metamaterial surfaces,” in IEEE Ant. Propagat. Soc. Internat. Symp. 2, 392-395 (2002).
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  15. H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008).
    [CrossRef] [PubMed]
  16. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
    [CrossRef]
  17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [CrossRef]
  18. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
    [CrossRef]
  19. G. P. Williams, “Filling the THz gap--high power sources and applications,” Rep. Prog. Phys. 69, 301-326 (2006).
    [CrossRef]
  20. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007).
    [CrossRef]
  21. All the simulations in this paper are performed using software package CST Microwave Studio, CST GmbH, Germany.
  22. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
    [CrossRef]
  23. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
    [CrossRef] [PubMed]
  24. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
    [CrossRef]
  25. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
    [CrossRef]
  26. T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
    [CrossRef]
  27. A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
    [CrossRef]
  28. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
    [CrossRef] [PubMed]
  29. G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85, 5037-5039 (2004).
    [CrossRef]
  30. A. S. P. Chang, Y. Kim, M. Chen, Z. Yang, J. A. Bur, S. Lin, and K. Ho, “Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff,” Opt. Express 15, 8428-8437 (2007).
    [CrossRef] [PubMed]

2009

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

2008

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

2007

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007).
[CrossRef]

A. S. P. Chang, Y. Kim, M. Chen, Z. Yang, J. A. Bur, S. Lin, and K. Ho, “Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff,” Opt. Express 15, 8428-8437 (2007).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

2006

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

G. P. Williams, “Filling the THz gap--high power sources and applications,” Rep. Prog. Phys. 69, 301-326 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

2005

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95, 165003 (2005).
[CrossRef] [PubMed]

2004

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85, 5037-5039 (2004).
[CrossRef]

2002

N. Engheta, “Thin absorbing screens using metamaterial surfaces,” in IEEE Ant. Propagat. Soc. Internat. Symp. 2, 392-395 (2002).

2001

J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001).
[CrossRef]

2000

W. C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

1997

1994

1988

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

1976

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

Bliokh, Y. P.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95, 165003 (2005).
[CrossRef] [PubMed]

Bock, J. J.

Boltasseva, A.

A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Bur, J. A.

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Chang, A. S. P.

Chen, M.

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

Del Castillo, H.

Dong, Z. G.

Engheta, N.

N. Engheta, “Thin absorbing screens using metamaterial surfaces,” in IEEE Ant. Propagat. Soc. Internat. Symp. 2, 392-395 (2002).

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Felsteiner, J.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95, 165003 (2005).
[CrossRef] [PubMed]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Fu, L.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

Garcia De Abajo, F. J.

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Giessen, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Grubert, J.

J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

Ho, K.

Holzapfel, W. L.

Hutley, M. C.

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Jacob, A. F.

J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001).
[CrossRef]

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Kaiser, S.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

Kim, Y.

Knott, E. F.

E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

Koschny, T.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

Lange, A. E.

Li, T.

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Lin, S.

Lin, S. Y.

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85, 5037-5039 (2004).
[CrossRef]

Liu, H.

Liu, N.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

Mauskopf, P. D.

Maystre, D.

E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33, 5214-5219 (1994).
[CrossRef] [PubMed]

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Paddila, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Padilla, W. J.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

Parsons, A. D.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

Pedder, D. J.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Popov, E.

Preist, T. W.

W. C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Psilopoulos, J.

J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001).
[CrossRef]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Reinert, J.

J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Salisbury, W. W.

W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. Patent No. 2,599,944 (1952).

Sambles, J. R.

W. C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Schaeffer, J. F.

E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

Schweizer, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

Shalaev, V. M.

A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Slutsker, Y. Z.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95, 165003 (2005).
[CrossRef] [PubMed]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Subramania, G.

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85, 5037-5039 (2004).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Tan, W. C.

W. C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008).
[CrossRef] [PubMed]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Tsonev, L.

Tuley, M. T.

E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

Tuttle, G.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Wang, F. M.

Williams, G. P.

G. P. Williams, “Filling the THz gap--high power sources and applications,” Rep. Prog. Phys. 69, 301-326 (2006).
[CrossRef]

Yang, Z.

Zhan, X.

Zhang, L.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Zhu, S. N.

Adv. Mater. (Weinheim, Ger.)

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85, 5037-5039 (2004).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

IEEE Ant. Propagat. Soc. Internat. Symp.

N. Engheta, “Thin absorbing screens using metamaterial surfaces,” in IEEE Ant. Propagat. Soc. Internat. Symp. 2, 392-395 (2002).

J. Appl. Phys.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

J. Vac. Sci. Technol. A

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

Metamaterials

A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

Microwave Opt. Technol. Lett.

J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001).
[CrossRef]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007).
[CrossRef]

T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Nature

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Opt. Commun.

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Opt. Express

Phys. Rev. B

W. C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Phys. Rev. Lett.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95, 165003 (2005).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Rep. Prog. Phys.

G. P. Williams, “Filling the THz gap--high power sources and applications,” Rep. Prog. Phys. 69, 301-326 (2006).
[CrossRef]

Other

All the simulations in this paper are performed using software package CST Microwave Studio, CST GmbH, Germany.

E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).

W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. Patent No. 2,599,944 (1952).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagrams of the THz absorbers consisting of a metallic film, a polymer separation layer, and (a) a cut-wire array; (c) a cross array. (b) and (d) Unit cell of the two absorbers in the calculation of the reflection spectrum. Axes in (a) and (c) indicate the polarization and propagation direction of the incident wave.

Fig. 2
Fig. 2

Reflection spectra for (a) different values of polymer separation thickness t; (b) different values of cut-wire length l. Star point A denotes the resonant dip when t = 2.4 μ m . (c) and (d) Distributions of the z component electric field for resonance A on the cut wire and the metallic film, respectively. The inset of Fig. 2a shows the effective LC circuit for the magnetic polariton resonance. The inset of Fig. 2b shows the resonant wavelength as a function of the cut-wire length.

Fig. 3
Fig. 3

Absorption spectra for different incidence angles with (a) TM and (b) TE configurations. The insets depict the polarization and propagation direction of incident waves.

Fig. 4
Fig. 4

Absorption spectra as a function of incident angle θ for (a) TE polarization and (c) TM polarization, when azimuthal angle φ = 0 . The absorption spectra as a function of azimuthal angle φ for (b) TE polarization and (d) TM polarization, when incident angle θ = 45 ° .

Fig. 5
Fig. 5

Schematic diagram of a 3-layer cross structure with the geometrical parameters of each layer marked on it. The crosses from the bottom to the top are denoted in sequence as the 1 st cross, 2 nd cross, and 3 rd cross. The dashed line shows the cross-section plane y = 0 .

Fig. 6
Fig. 6

Absorption spectra for (a) 1-layer cross structure; (b) 2-layer cross structure; (c) 3-layer cross structure. The geometrical parameters used here are given in Table 1. The insets show the details at the frequency range of the resonant absorption. I a , II a , II b , III a , III b , and III c denote the resonant peaks in each spectrum.

Fig. 7
Fig. 7

Corresponding distributions of y component magnetic field magnitude | H y | in plane y = 0 for each resonance shown in Fig. 6.

Fig. 8
Fig. 8

Absorption spectra of the 3-layer cross structure as a function of incidence angle θ for (a) TE polarization and (c) TM polarization, when the azimuthal angle is fixed to φ = 0 .

Tables (1)

Tables Icon

Table 1 Optimized Parameters ( μ m ) for 1-, 2-, and 3-layer Cross Structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f m = 1 2 π L C 2 1 l .

Metrics