Abstract

We report on the performance of the first table-top prototype atomic clock based on coherent population trapping (CPT) resonances with parallel linearly polarized optical fields (linlin configuration). Our apparatus uses a vertical-cavity surface-emitting laser (VCSEL) tuned to the D1 line of Rb87 with the current modulation at the Rb87 hyperfine frequency. We demonstrate cancellation of the first-order light shift by the proper choice of rf modulation power and further improve our prototype clock stability by optimizing the parameters of the microwave lock loop. Operating in these optimal conditions, we measured a short-term fractional frequency stability (Allan deviation) 2×1011τ12 for observation times 1sτ20s. This value is limited by large VCSEL phase noise and environmental temperature fluctuation. Further improvements in frequency stability should be possible with an apparatus designed as a dedicated linlin CPT resonance clock with environmental impacts minimized.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B: Lasers Opt. 81, 421-442 (2005).
    [CrossRef]
  2. M. Merimaa, T. Lindwall, I. Tittonen, and E. Ikonen, “All-optical atomic clock based on coherent population trapping in Rb85,” J. Opt. Soc. Am. B 20, 273-279 (2003).
    [CrossRef]
  3. S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
    [CrossRef]
  4. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
    [CrossRef] [PubMed]
  5. R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.
  6. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
    [CrossRef] [PubMed]
  7. T. W. Kornack, R. K. Ghosh and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
    [CrossRef] [PubMed]
  8. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapor cell,” Nat. Photonics 1, 649-652 (2007).
    [CrossRef]
  9. M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
    [CrossRef] [PubMed]
  10. W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
    [CrossRef]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
    [CrossRef]
  12. M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: theory and experiment,” Phys. Rev. A 63, 043813 (2001).
    [CrossRef]
  13. S. Knappe, L. Hollberg, and J. Kitching, “Dark-line atomic resonances in submillimeter structures,” Opt. Lett. 29, 388-390 (2004).
    [CrossRef] [PubMed]
  14. N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640-649 (1993).
    [CrossRef]
  15. Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
    [CrossRef] [PubMed]
  16. A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
    [CrossRef]
  17. Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
    [CrossRef] [PubMed]
  18. T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
    [CrossRef] [PubMed]
  19. V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in Rb-87,” Opt. Lett. 32, 1244-1246 (2007).
    [CrossRef] [PubMed]
  20. A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, “On the unique possibility if significantly increasing the contrast of dark resonances on the D1 line of Rb87,” JETP Lett. 82, 398-403 (2005).
    [CrossRef]
  21. G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
    [CrossRef]
  22. S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
    [CrossRef]
  23. E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
    [CrossRef]
  24. A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, “Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
    [CrossRef]
  25. V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341-346 (2000).
    [CrossRef]
  26. N. Belcher, E. E. Mikhailov, and I. Novikova, “Atomic clocks and coherent population trapping: experiments for undergraduate laboratories,” Am. J. Phys. 77, 988-998 (2009).
    [CrossRef]
  27. I. Ben-Aroya, M. Kahanov, and G. Eisenstein, “Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks,” Opt. Express 15, 15060-15065 (2007).
    [CrossRef] [PubMed]
  28. A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
    [CrossRef]
  29. E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, “Buffer-gas induced absorption resonances in Rb vapor,” Phys. Rev. A 70, 033806 (2004).
    [CrossRef]
  30. S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
    [CrossRef]
  31. Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
    [CrossRef] [PubMed]
  32. Y. Xiao, I. Novikova, D. Phillips, and R. L. Walsworth, “Repeated interaction model for diffusion-induced Ramsey narrowing,” Opt. Express 16, 14128-14141 (2008).
    [CrossRef] [PubMed]
  33. I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt. 52, 2381-2390 (2005).
    [CrossRef]
  34. D. F. Phillips, I. Novikova, C. Y.-T. Wang, M. Crescimanno and R. L. Walsworth, “Modulation induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B 22, 305-310 (2005).
    [CrossRef]
  35. J. Vanier, M. W. Levine, D. Janssen, M. J. Delaney, “On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards,” IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
    [CrossRef]
  36. I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622-624 (2006).
    [CrossRef] [PubMed]
  37. http://www.kernco.com/pdfs/CPT-C01DataSheet060704D.pdf.

2010 (1)

A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, “Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

2009 (3)

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
[CrossRef]

N. Belcher, E. E. Mikhailov, and I. Novikova, “Atomic clocks and coherent population trapping: experiments for undergraduate laboratories,” Am. J. Phys. 77, 988-998 (2009).
[CrossRef]

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

2008 (2)

Y. Xiao, I. Novikova, D. Phillips, and R. L. Walsworth, “Repeated interaction model for diffusion-induced Ramsey narrowing,” Opt. Express 16, 14128-14141 (2008).
[CrossRef] [PubMed]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (2)

2005 (10)

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt. 52, 2381-2390 (2005).
[CrossRef]

D. F. Phillips, I. Novikova, C. Y.-T. Wang, M. Crescimanno and R. L. Walsworth, “Modulation induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B 22, 305-310 (2005).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

T. W. Kornack, R. K. Ghosh and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B: Lasers Opt. 81, 421-442 (2005).
[CrossRef]

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, “On the unique possibility if significantly increasing the contrast of dark resonances on the D1 line of Rb87,” JETP Lett. 82, 398-403 (2005).
[CrossRef]

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[CrossRef]

S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
[CrossRef]

2004 (6)

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[CrossRef] [PubMed]

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

S. Knappe, L. Hollberg, and J. Kitching, “Dark-line atomic resonances in submillimeter structures,” Opt. Lett. 29, 388-390 (2004).
[CrossRef] [PubMed]

E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, “Buffer-gas induced absorption resonances in Rb vapor,” Phys. Rev. A 70, 033806 (2004).
[CrossRef]

2003 (5)

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

J. Vanier, M. W. Levine, D. Janssen, M. J. Delaney, “On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards,” IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

M. Merimaa, T. Lindwall, I. Tittonen, and E. Ikonen, “All-optical atomic clock based on coherent population trapping in Rb85,” J. Opt. Soc. Am. B 20, 273-279 (2003).
[CrossRef]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

2001 (1)

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: theory and experiment,” Phys. Rev. A 63, 043813 (2001).
[CrossRef]

2000 (1)

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

1993 (1)

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640-649 (1993).
[CrossRef]

Affolderbach, C.

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Belcher, N.

N. Belcher, E. E. Mikhailov, and I. Novikova, “Atomic clocks and coherent population trapping: experiments for undergraduate laboratories,” Am. J. Phys. 77, 988-998 (2009).
[CrossRef]

Ben-Aroya, I.

Braun, A. M.

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

Breschi, E.

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

Breton, M.

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640-649 (1993).
[CrossRef]

Budker, D.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Clarion, A.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Crescimanno, M.

Cyr, N.

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640-649 (1993).
[CrossRef]

Davis, J. R.

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

de Clercq, E.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Delaney, M. J.

J. Vanier, M. W. Levine, D. Janssen, M. J. Delaney, “On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards,” IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

Delporte, J.

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[CrossRef]

Deng, J.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Dimarcq, N.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Eisenstein, G.

Erhard, M.

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: theory and experiment,” Phys. Rev. A 63, 043813 (2001).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Geib, K. M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Ghosh, R. K.

T. W. Kornack, R. K. Ghosh and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[CrossRef] [PubMed]

Griffith, W. C.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
[CrossRef]

Guerandel, S.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Happer, W.

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[CrossRef] [PubMed]

Helm, H.

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: theory and experiment,” Phys. Rev. A 63, 043813 (2001).
[CrossRef]

Hollberg, L.

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in Rb-87,” Opt. Lett. 32, 1244-1246 (2007).
[CrossRef] [PubMed]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

S. Knappe, L. Hollberg, and J. Kitching, “Dark-line atomic resonances in submillimeter structures,” Opt. Lett. 29, 388-390 (2004).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

Holleville., D.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Ikonen, E.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Janssen, D.

J. Vanier, M. W. Levine, D. Janssen, M. J. Delaney, “On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards,” IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

Jau, Y. Y.

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

Jau, Y.-Y.

Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[CrossRef] [PubMed]

Jimenez-Martinez, R.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
[CrossRef]

Kahanov, M.

Kargapoltsev, S. V.

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

Kazakov, G.

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[CrossRef]

Kitching, J.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in Rb-87,” Opt. Lett. 32, 1244-1246 (2007).
[CrossRef] [PubMed]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapor cell,” Nat. Photonics 1, 649-652 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

S. Knappe, L. Hollberg, and J. Kitching, “Dark-line atomic resonances in submillimeter structures,” Opt. Lett. 29, 388-390 (2004).
[CrossRef] [PubMed]

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

Knappe, S.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in Rb-87,” Opt. Lett. 32, 1244-1246 (2007).
[CrossRef] [PubMed]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapor cell,” Nat. Photonics 1, 649-652 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Hollberg, and J. Kitching, “Dark-line atomic resonances in submillimeter structures,” Opt. Lett. 29, 388-390 (2004).
[CrossRef] [PubMed]

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Kornack, T. W.

T. W. Kornack, R. K. Ghosh and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[CrossRef] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Kuzma, N. N.

Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[CrossRef] [PubMed]

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

Lammegger, R.

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

Leblanc, J.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Levine, M. W.

J. Vanier, M. W. Levine, D. Janssen, M. J. Delaney, “On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards,” IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

Liew, L.

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

Lindwall, T.

Lutwak, R.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Matisov, B.

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[CrossRef]

Mazets, I.

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[CrossRef]

Merimaa, M.

Mescher, M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Michalak, D. J.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Mikhailov, E. E.

N. Belcher, E. E. Mikhailov, and I. Novikova, “Atomic clocks and coherent population trapping: experiments for undergraduate laboratories,” Am. J. Phys. 77, 988-998 (2009).
[CrossRef]

E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, “Buffer-gas induced absorption resonances in Rb vapor,” Phys. Rev. A 70, 033806 (2004).
[CrossRef]

Mileti, G.

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[CrossRef]

Miron, E.

Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[CrossRef] [PubMed]

Moreland, J.

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

Novikova, I.

N. Belcher, E. E. Mikhailov, and I. Novikova, “Atomic clocks and coherent population trapping: experiments for undergraduate laboratories,” Am. J. Phys. 77, 988-998 (2009).
[CrossRef]

Y. Xiao, I. Novikova, D. Phillips, and R. L. Walsworth, “Repeated interaction model for diffusion-induced Ramsey narrowing,” Opt. Express 16, 14128-14141 (2008).
[CrossRef] [PubMed]

I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622-624 (2006).
[CrossRef] [PubMed]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[CrossRef] [PubMed]

D. F. Phillips, I. Novikova, C. Y.-T. Wang, M. Crescimanno and R. L. Walsworth, “Modulation induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B 22, 305-310 (2005).
[CrossRef]

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt. 52, 2381-2390 (2005).
[CrossRef]

E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, “Buffer-gas induced absorption resonances in Rb vapor,” Phys. Rev. A 70, 033806 (2004).
[CrossRef]

Peake, G. M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Phillips, D.

Phillips, D. F.

Pines, A.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Post, A. B.

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[CrossRef] [PubMed]

Riley, W.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Romalis, M. V.

T. W. Kornack, R. K. Ghosh and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[CrossRef] [PubMed]

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Rostovtsev, Y. V.

E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, “Buffer-gas induced absorption resonances in Rb vapor,” Phys. Rev. A 70, 033806 (2004).
[CrossRef]

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Schwindt, P.

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

Schwindt, P. D. D.

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapor cell,” Nat. Photonics 1, 649-652 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

Serkland, D. K.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Shah, V.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in Rb-87,” Opt. Lett. 32, 1244-1246 (2007).
[CrossRef] [PubMed]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapor cell,” Nat. Photonics 1, 649-652 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on Rb87 with improved frequency stability,” Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

Stahler, M.

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

Taichenachev, A. V.

A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, “Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622-624 (2006).
[CrossRef] [PubMed]

S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, “On the unique possibility if significantly increasing the contrast of dark resonances on the D1 line of Rb87,” JETP Lett. 82, 398-403 (2005).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

Tepolt, G.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Têtu, M.

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640-649 (1993).
[CrossRef]

Tittonen, I.

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B: Lasers Opt. 81, 421-442 (2005).
[CrossRef]

J. Vanier, M. W. Levine, D. Janssen, M. J. Delaney, “On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards,” IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

Varghese, M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Velichansky, V. L.

A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, “Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, “On the unique possibility if significantly increasing the contrast of dark resonances on the D1 line of Rb87,” JETP Lett. 82, 398-403 (2005).
[CrossRef]

S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

Walsworth, R. L.

Wang, C. Y.-T.

Welch, G. R.

E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, “Buffer-gas induced absorption resonances in Rb vapor,” Phys. Rev. A 70, 033806 (2004).
[CrossRef]

Windholz, L.

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

Wynands, R.

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

Xiao, Y.

Y. Xiao, I. Novikova, D. Phillips, and R. L. Walsworth, “Repeated interaction model for diffusion-induced Ramsey narrowing,” Opt. Express 16, 14128-14141 (2008).
[CrossRef] [PubMed]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[CrossRef] [PubMed]

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt. 52, 2381-2390 (2005).
[CrossRef]

Xu, S.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Yashchuk, V. V.

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Yudin, V. I.

A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, “Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622-624 (2006).
[CrossRef] [PubMed]

S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, “On the unique possibility if significantly increasing the contrast of dark resonances on the D1 line of Rb87,” JETP Lett. 82, 398-403 (2005).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

Zanon, T.

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Zibrov, A. S.

A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, “Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622-624 (2006).
[CrossRef] [PubMed]

S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
[CrossRef]

Zibrov, S. A.

S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, “On the unique possibility if significantly increasing the contrast of dark resonances on the D1 line of Rb87,” JETP Lett. 82, 398-403 (2005).
[CrossRef]

Am. J. Phys. (1)

N. Belcher, E. E. Mikhailov, and I. Novikova, “Atomic clocks and coherent population trapping: experiments for undergraduate laboratories,” Am. J. Phys. 77, 988-998 (2009).
[CrossRef]

Appl. Phys. B: Lasers Opt. (2)

S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parametrization of dark-resonance line shapes,” Appl. Phys. B: Lasers Opt. 76, 57-63 (2003).
[CrossRef]

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B: Lasers Opt. 81, 421-442 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94, 023502 (2009).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640-649 (1993).
[CrossRef]

J. Vanier, M. W. Levine, D. Janssen, M. J. Delaney, “On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards,” IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

J. Mod. Opt. (1)

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt. 52, 2381-2390 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (3)

S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, “Experimental investigation of the dark pseudoresonance on the D1 line of the Rb87 atom excited by a linearly polarized field,” JETP Lett. 82, 477-481 (2005).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D-1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236-240 (2004).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, “On the unique possibility if significantly increasing the contrast of dark resonances on the D1 line of Rb87,” JETP Lett. 82, 398-403 (2005).
[CrossRef]

Nat. Photonics (1)

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapor cell,” Nat. Photonics 1, 649-652 (2007).
[CrossRef]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (6)

E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B. Matisov, and L. Windholz, “Quantitative study of the destructive quantum-interference effect on coherent population trapping,” Phys. Rev. A 79, 063837 (2009).
[CrossRef]

A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, “Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
[CrossRef]

E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, “Buffer-gas induced absorption resonances in Rb vapor,” Phys. Rev. A 70, 033806 (2004).
[CrossRef]

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: theory and experiment,” Phys. Rev. A 63, 043813 (2001).
[CrossRef]

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[CrossRef]

Phys. Rev. Lett. (5)

Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[CrossRef] [PubMed]

T. Zanon, S. Guerandel, E. de Clercq, D. Holleville., N. Dimarcq, and A. Clarion, “High-contrast Ramsey fringes with coherent population trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[CrossRef] [PubMed]

Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
[CrossRef] [PubMed]

T. W. Kornack, R. K. Ghosh and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[CrossRef] [PubMed]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Other (2)

http://www.kernco.com/pdfs/CPT-C01DataSheet060704D.pdf.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “The chip-scale atomic clock--low-power physics package,” in Proceedings of the 36th Annual PTTI Meeting (2004), pp. 339-354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Idealized three-level Λ system that allows for coherent population trapping. (b) Optical transitions excited during the interaction of two linearly polarized optical fields at the carrier frequency E ( 0 ) and the first modulation sideband E ( + 1 ) for the D 1 line of Rb 87 atoms. In the presence of a longitudinal magnetic field each light field is decomposed into σ + and σ circular components of equal amplitude. Solid arrows indicate the two Λ systems responsible for magnetic-field-insensitive CPT resonances at the hyperfine frequency ( lin lin CPT resonances). One-photon detuning Δ is the frequency difference between the F = 2 F = 1 transition and the unmodulated laser frequency.

Fig. 2
Fig. 2

Schematic of the experimental setup. Here PBS is a polarizing beam splitter, LPF is a low-pass filter, PD is a photodetector, and VCOCXO is a voltage-control oven-stabilized oscillator.

Fig. 3
Fig. 3

Schematic of the 6.835 GHz microwave source.

Fig. 4
Fig. 4

Dependence of the clock lock loop sensitivity in arbitrary units on the lock-in modulation frequency and modulation depth. Crosses mark measured data points, and the rest of the map is recreated via an interpolation routine.

Fig. 5
Fig. 5

Dependence of the measured clock frequency shift on laser power for three different sideband-carrier ratios (40%, 60%, and 90%). For these measurements the carrier laser frequency was tuned by approximately 200 MHz from 5 S 1 2 F g = 2 5 P 1 2 F e = 1 transition.

Fig. 6
Fig. 6

(a) Measured clock frequency shift and (b) resonance contrast as functions of laser detuning from the 5 S 1 2 F g = 2 5 P 1 2 F e = 1 transition. Total laser power is 60 μ W , and the sideband-carrier ratio is approximately 50%. Lines are to guide the eye.

Fig. 7
Fig. 7

(a) Measured laser power after the Rb cell as a function of the two-photon detuning δ 6.834686890 GHz in the presence of a constant longitudinal magnetic field B = 12.3 mG . The central CPT resonance corresponds to the magnetic-field-insensitive Λ configurations (“clock” transition), shown with bold solid arrows in Fig. 1b, and two side peaks are magnetic-field-sensitive CPT resonances. Normalized transmission around the central clock resonance is shown (dots) in (b) together with a generalized Lorentzian fit (solid curve). Total input laser power is 120 μ W , and all the resonances were recorded under the optimized light-shift cancellation conditions: the sideband-carrier ratio 60%, the carrier laser frequency Δ = 200 MHz .

Fig. 8
Fig. 8

Measured fractional clock stability of the microwave oscillator locked to the CPT resonance. Solid line shows σ ( τ ) = 2 × 10 11 τ 1 2 fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( δ ) = 1 + γ A γ + B ( δ δ 0 ) ( γ ) 2 + ( δ δ 0 ) 2 ,
σ ( τ ) = 1 4 η e I bg 1 q ν 0 τ 1 2 .

Metrics