Abstract

Micro- and nanofibers constitute an attractive platform for testing nonlinear devices with millimeter size in a simple and flexible fashion, with potential applications in ultra-fast all-optical communications. In this article, we present challenges that must be addressed and targets that can be reached using such a platform. We describe a tunable laser source capable of delivering pulses with a kilowatt peak power and a sub-0.1-nm linewidth that is specially designed for the study of resonant devices such as the nonlinear loop resonator. Experimental and simulation results are presented for silica microfiber based nonlinear devices. The prospect of developing hybrid devices combining highly nonlinear glasses and silica fibers is supported by numerical simulations of the coupling between two nanofibers of largely different optical indices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
    [CrossRef]
  2. J. K. Lucek and K. Smith, “All-optical signal regenerator,” Opt. Lett. 18, 1226-1228 (1993).
    [CrossRef] [PubMed]
  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
    [CrossRef]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  5. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15, 7802-7809 (2007).
    [CrossRef] [PubMed]
  6. P. S. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  7. J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
    [CrossRef]
  8. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300-1320 (2008).
    [CrossRef] [PubMed]
  9. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107-161 (2009).
    [CrossRef]
  10. L. Xiao, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34, 2724-2726 (2009).
    [CrossRef] [PubMed]
  11. L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008) (Proceedings of the 2005 International Conference on Glass, in conjunction with the Annual Meeting of the International Commission on Glass).
    [CrossRef]
  12. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880-2887 (2004).
    [CrossRef] [PubMed]
  13. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures. Part I: Kerr nonlinearity,” Opt. Express 17, 2298-2318 (2009).
    [CrossRef]
  14. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408-9414 (2006).
    [CrossRef] [PubMed]
  15. D.-I. Yeom, E. C. Mgi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660-662 (2008).
    [CrossRef] [PubMed]
  16. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic uv generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447-450 (2007).
    [CrossRef]
  17. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988).
    [CrossRef] [PubMed]
  18. I. White, R. Penty, and R. Epworth, “Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett. 24, 340-341 (1988).
    [CrossRef]
  19. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  20. G. Vienne, P. Grelu, X. Pan, Y. Li, and L. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” J. Opt. A, Pure Appl. Opt. 10, 025303 (2008).
    [CrossRef]
  21. G. Vienne, Y. Li, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500-1502 (2008).
    [CrossRef] [PubMed]
  22. X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
    [CrossRef]
  23. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  24. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  25. N. G. R. Broderick and T. T. Ng, “Theoretical study of noise reduction of NRZ signals using nonlinear broken microcoil resonators,” IEEE Photon. Technol. Lett. 21, 444-446 (2009).
    [CrossRef]
  26. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242-250 (2006).
    [CrossRef]
  27. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  28. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006).
    [CrossRef] [PubMed]
  29. G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17, 6224-6229 (2009).
    [CrossRef] [PubMed]
  30. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972-2974 (2006).
    [CrossRef] [PubMed]
  31. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429-1434 (2007).
    [CrossRef] [PubMed]
  32. G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001).
    [CrossRef]

2009 (7)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107-161 (2009).
[CrossRef]

L. Xiao, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34, 2724-2726 (2009).
[CrossRef] [PubMed]

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures. Part I: Kerr nonlinearity,” Opt. Express 17, 2298-2318 (2009).
[CrossRef]

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
[CrossRef]

N. G. R. Broderick and T. T. Ng, “Theoretical study of noise reduction of NRZ signals using nonlinear broken microcoil resonators,” IEEE Photon. Technol. Lett. 21, 444-446 (2009).
[CrossRef]

G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17, 6224-6229 (2009).
[CrossRef] [PubMed]

2008 (5)

G. Vienne, P. Grelu, X. Pan, Y. Li, and L. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” J. Opt. A, Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

G. Vienne, Y. Li, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500-1502 (2008).
[CrossRef] [PubMed]

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008) (Proceedings of the 2005 International Conference on Glass, in conjunction with the Annual Meeting of the International Commission on Glass).
[CrossRef]

D.-I. Yeom, E. C. Mgi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660-662 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300-1320 (2008).
[CrossRef] [PubMed]

2007 (4)

J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15, 7802-7809 (2007).
[CrossRef] [PubMed]

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic uv generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447-450 (2007).
[CrossRef]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429-1434 (2007).
[CrossRef] [PubMed]

2006 (5)

2004 (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[CrossRef]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880-2887 (2004).
[CrossRef] [PubMed]

2003 (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001).
[CrossRef]

1996 (1)

1993 (1)

1988 (2)

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988).
[CrossRef] [PubMed]

I. White, R. Penty, and R. Epworth, “Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett. 24, 340-341 (1988).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Amraoui, M. E.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Bai, J.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bermel, P.

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Birks, T. A.

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Boudebs, G.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Brambilla, G.

Broderick, N. G. R.

N. G. R. Broderick and T. T. Ng, “Theoretical study of noise reduction of NRZ signals using nonlinear broken microcoil resonators,” IEEE Photon. Technol. Lett. 21, 444-446 (2009).
[CrossRef]

Burr, G.

Coillet, A.

Cumberland, B.

J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
[CrossRef]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

DiGiovanni, D. J.

Doran, N. J.

Dulashko, Y.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Eggleton, B. J.

England, R.

Epworth, R.

I. White, R. Penty, and R. Epworth, “Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett. 24, 340-341 (1988).
[CrossRef]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Farjadpour, A.

Feinberg, J.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic uv generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447-450 (2007).
[CrossRef]

Feng, X.

Fini, J. M.

Foster, M. A.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Fu, L.

Gaeta, A. L.

Gattass, R. R.

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408-9414 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Geraghty, D. F.

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Gorodetsky, M. L.

Grelu, P.

Grogan, M. D.

Grubsky, V.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic uv generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447-450 (2007).
[CrossRef]

Hale, A.

He, J.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hou, C.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
[CrossRef]

Hu, L.

Huang, K.

Ibanescu, M.

Ilchenko, V. S.

Joannopoulos, J. D.

Johnson, S. G.

Jules, J. -C.

Jung, Y.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Koizumi, F.

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Koukharenko, E.

Lamont, M. R. E.

Leon-Saval, S. G.

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Li, Y.

G. Vienne, P. Grelu, X. Pan, Y. Li, and L. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” J. Opt. A, Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

G. Vienne, Y. Li, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500-1502 (2008).
[CrossRef] [PubMed]

Lipson, M.

Lou, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Lucek, J. K.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008) (Proceedings of the 2005 International Conference on Glass, in conjunction with the Annual Meeting of the International Commission on Glass).
[CrossRef]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408-9414 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mgi, E. C.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Moll, K. D.

Monro, T. M.

Murugan, G. S.

Ng, T. T.

N. G. R. Broderick and T. T. Ng, “Theoretical study of noise reduction of NRZ signals using nonlinear broken microcoil resonators,” IEEE Photon. Technol. Lett. 21, 444-446 (2009).
[CrossRef]

Pan, X.

G. Vienne, P. Grelu, X. Pan, Y. Li, and L. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” J. Opt. A, Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Penty, R.

I. White, R. Penty, and R. Epworth, “Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett. 24, 340-341 (1988).
[CrossRef]

Popov, S.

J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
[CrossRef]

Qiu, J.

Richardson, D. J.

Rodriguez, A.

Roelens, M. A. F.

Roundy, D.

Rulkov, A.

J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
[CrossRef]

Russell, P. S.

Salem, R.

Sanchez, F.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Savchenkov, A. A.

Sessions, N. P.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Shen, Y.

Smektala, F.

G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17, 6224-6229 (2009).
[CrossRef] [PubMed]

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Smith, K.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Sumetsky, M.

Svacha, G. T.

Taylor, J.

J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
[CrossRef]

Tong, L.

G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17, 6224-6229 (2009).
[CrossRef] [PubMed]

G. Vienne, Y. Li, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500-1502 (2008).
[CrossRef] [PubMed]

G. Vienne, P. Grelu, X. Pan, Y. Li, and L. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” J. Opt. A, Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008) (Proceedings of the 2005 International Conference on Glass, in conjunction with the Annual Meeting of the International Commission on Glass).
[CrossRef]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429-1434 (2007).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408-9414 (2006).
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Travers, J.

J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
[CrossRef]

Troles, J.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Turner, A. C.

V., S. Afshar

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Vienne, G.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Wada, O.

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[CrossRef]

Wadsworth, W. J.

White, I.

I. White, R. Penty, and R. Epworth, “Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett. 24, 340-341 (1988).
[CrossRef]

Wilkinson, J. S.

Williams, R.

Wood, D.

Wu, Y.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
[CrossRef]

Xiao, L.

Xu, F.

Yang, G.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
[CrossRef]

Yang, Q.

Yang, S.

Ye, Z.

Yeom, D. -I.

Zeng, X.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
[CrossRef]

Zhang, J.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Electron. Lett. (1)

I. White, R. Penty, and R. Epworth, “Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett. 24, 340-341 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. G. R. Broderick and T. T. Ng, “Theoretical study of noise reduction of NRZ signals using nonlinear broken microcoil resonators,” IEEE Photon. Technol. Lett. 21, 444-446 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008) (Proceedings of the 2005 International Conference on Glass, in conjunction with the Annual Meeting of the International Commission on Glass).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Vienne, P. Grelu, X. Pan, Y. Li, and L. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” J. Opt. A, Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

Nat. Photonics (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009).
[CrossRef]

Nature (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[CrossRef]

Opt. Commun. (3)

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic uv generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447-450 (2007).
[CrossRef]

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001).
[CrossRef]

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009).
[CrossRef]

Opt. Express (7)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007).
[CrossRef]

Other (1)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of the experimental pulsed-laser source.

Fig. 2
Fig. 2

Measured pulsed-laser output: (a) temporal shape and (b) optical spectrum.

Fig. 3
Fig. 3

(a), (c), and (e) Simulated transfer function and (b), (d), and (f) pulse shaping through a nonlinear ring resonator for various linear detunings φ.

Fig. 4
Fig. 4

Experimental transmission spectrum and fit for a 2.7 mm diameter silica loop resonator. The ASE of the source is used to obtain this spectrum and the large peak is due to the laser emission.

Fig. 5
Fig. 5

(a) Experimental output pulse for three different pulse wavelengths making three different cavity detunings. This asymmetric pulse shaping is explained with SPM broadening. (b) Experimental transmission spectrum of the resonator with respective positions of the central wavelength. (c) Calculated SPM wavelength chirp taking into account experimental pulse shape and input power.

Fig. 6
Fig. 6

(a) Output spectrum in the visible domain showing strong THG. The microfiber used was around 700 nm in diameter at the waist and 2 cm in length. (b) Calculated effective indices for the different modes at play. For a pump wavelength λ = 1550   nm , the phase-matching diameter is 765 nm.

Fig. 7
Fig. 7

Calculated (a) effective index and (b) nonlinearity versus fiber diameter for three different glasses at a wavelength of 1.55 μ m . The cut-off diameter of silica serves as a reference. Corresponding phase-matched diameters of chalcogenide and tellurite as well as corresponding effective nonlinearities are marked on the curves.

Fig. 8
Fig. 8

FDTD 3D simulations of the transmission between a chalcogenide fiber and a silica fiber. (a) Index map (darker means higher index). [(b)–(g)] Poynting vector along the propagation axis for increasing chalcogenide fiber diameter. The diameter of the output silica microfiber is 1.1 μ m . (h) Maximum intensity in the silica fiber divided by maximum intensity in the chalcogenide fiber versus chalcogenide fiber diameter.

Tables (1)

Tables Icon

Table 1 Glasses Properties

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ = β L + γ eff L | E 1 | 2 ,

Metrics