Abstract

Chirped-pulse upconversion (CPU) enables the detection of mid-infrared spectra using a silicon CCD camera by sum-frequency mixing a mid-IR field with a highly chirped near-IR (800 nm) field. Although the substantial chirp limits the spectral broadening and phase distortions caused by the inherent cross-phase modulation, the exquisite phase fidelity needed to measure a fully absorptive two-dimensional IR spectrum demands the correction of the phase distortions. We demonstrate how to correct all of the phase distortions involved in recording an absorptive 2DIR spectrum including delay stage calibrations as well as the requisite nonlinear signals. Besides the extra experimental step of the upconversion process itself, the phase correction procedure requires only the knowledge of the spectral or temporal phase of the chirped pulse. The method is demonstrated in a metal carbonyl complex, Mn2(CO)10, in n-hexane and methanol solvents showing that the method operates well in cases of both homogeneous and inhomogeneous broadening.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425-463 (2003).
    [CrossRef] [PubMed]
  2. N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42, 1352-1363 (2009).
    [CrossRef] [PubMed]
  3. W. Zhuang, T. Hayashi, and S. Mukamel, “Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges,” Angew. Chem. Int. Ed. 48, 3750-3781 (2009).
    [CrossRef]
  4. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331-1418 (2008).
    [CrossRef] [PubMed]
  5. M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60, 21-38 (2009).
    [CrossRef]
  6. Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231-8251 (2009).
    [CrossRef] [PubMed]
  7. S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42, 1239-1249 (2009).
    [CrossRef] [PubMed]
  8. P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291-317 (2008).
    [CrossRef]
  9. R. J. D. Miller, A. Paarmann, and V. I. Prokhorenko, “Diffractive optics based four-wave, six-wave, V-wave nonlinear spectroscopy,” Acc. Chem. Res. 42, 1442-1451 (2009).
    [CrossRef] [PubMed]
  10. D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “New advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control,” Adv. Chem. Phys. 141, 1-28 (2009).
    [CrossRef]
  11. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At., Mol., Opt. Phys. 57, 249-321 (2009).
    [CrossRef]
  12. E. R. Andresen and P. Hamm, “Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin,” J. Phys. Chem. B 113, 6520-6527 (2009).
    [CrossRef] [PubMed]
  13. V. Cervetto, P. Hamm, and J. Helbing, “Transient 2D-IR spectroscopy of thiopeptide isomerization,” J. Phys. Chem. B 112, 8398-8405 (2008).
    [CrossRef] [PubMed]
  14. J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
    [CrossRef] [PubMed]
  15. C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009).
    [CrossRef] [PubMed]
  16. C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally-selective geminate rebinding dynamics of solvent-caged radicals studied with non-equilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131, 13590-13591 (2009).
    [CrossRef] [PubMed]
  17. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 30, 1228-1230 (2005).
    [CrossRef] [PubMed]
  18. K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, “Characterization of mid-infrared femtosecond pulses [invited],” J. Opt. Soc. Am. B 25, A54-A62 (2008).
    [CrossRef]
  19. M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped-pulse upconversion,” Opt. Lett. 32, 713-715 (2007).
    [CrossRef] [PubMed]
  20. K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, “Removing cross-phase modulation from midinfrared chirped-pulse upconversion spectra,” Opt. Express 17, 18738-18744 (2009).
    [CrossRef]
  21. E. J. Heilweil, “Ultrashort-pulse multichannel infrared-spectroscopy using broad-band frequency-conversion in LiIO3,” Opt. Lett. 14, 551-553 (1989).
    [CrossRef] [PubMed]
  22. T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broad-band infrared spectrometer,” Opt. Lett. 19, 129-131 (1994).
    [CrossRef] [PubMed]
  23. T. P. Dougherty and E. J. Heilweil, “Transient infrared-spectroscopy of (η5−C5H5)Co(CO)2 photoproduct reactions in hydrocarbon solutions,” J. Chem. Phys. 100, 4006-4009 (1994).
    [CrossRef]
  24. J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “A new method for picosecond time-resolved infrared-spectroscopy--applications to CO photodissociation from iron porphyrins,” Chem. Phys. Lett. 138, 110-114 (1987).
    [CrossRef]
  25. J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “Iron carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared-spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 85, 5062-5066 (1988).
    [CrossRef] [PubMed]
  26. C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008).
    [CrossRef] [PubMed]
  27. M. E. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett. 30, 1818-1820 (2005).
    [CrossRef] [PubMed]
  28. M. F. DeCamp, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Single-shot two-dimensional infrared spectroscopy,” Opt. Express 15, 233-241 (2007).
    [CrossRef] [PubMed]
  29. M. M. Abbas, T. Kostiuk, and K. W. Ogilvie, “Infrared upconversion for astronomical applications,” Appl. Opt. 15, 961-970 (1976).
    [CrossRef] [PubMed]
  30. L. J. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17, 14395-14404 (2009).
    [CrossRef] [PubMed]
  31. S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007).
    [CrossRef] [PubMed]
  32. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966-2968 (2007).
    [CrossRef] [PubMed]
  33. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420-17428 (2008).
    [CrossRef] [PubMed]
  34. P. E. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34, 1390-1392 (2009).
    [CrossRef] [PubMed]
  35. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210-1212 (2000).
    [CrossRef]
  36. P. B. Petersen and A. Tokmakoff, “A source for ultrafast continuum infrared and terahertz radiation,” submitted to Opt. Lett. (2010).
  37. M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
    [CrossRef]
  38. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008).
    [CrossRef]
  39. A. V. Smith, “Snlo: free software for modeling nonlinear frequency conversion processes in nonlinear crystals,” http://www.as-photonics.com/snlo.html.
  40. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, “Increased-bandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal,” Opt. Express 7, 342-349 (2000).
    [CrossRef] [PubMed]
  41. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10 fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686-1688 (2004).
    [CrossRef] [PubMed]
  42. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
    [CrossRef]
  43. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  44. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21, 564-566 (1996).
    [CrossRef] [PubMed]
  45. C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000).
    [CrossRef]
  46. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307-313 (1998).
    [CrossRef]
  47. S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals,” J. Opt. Soc. Am. B 15, 2338-2345 (1998).
    [CrossRef]
  48. K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978).
    [CrossRef]
  49. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, 1987).
  50. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
    [CrossRef] [PubMed]
  51. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665-2667 (2008).
    [CrossRef] [PubMed]
  52. J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606-6622 (2001).
    [CrossRef]
  53. S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007).
    [CrossRef]
  54. O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001).
    [CrossRef]
  55. N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001).
    [CrossRef]
  56. M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213-230 (2001).
    [CrossRef]
  57. O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001).
    [CrossRef] [PubMed]
  58. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489-10505 (1999).
    [CrossRef]
  59. S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006).
    [CrossRef] [PubMed]
  60. A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A 104, 4247-4255 (2000).
    [CrossRef]
  61. K. Okumura, A. Tokmakoff, and Y. Tanimura, “Two-dimensional line-shape analysis of photon-echo signal,” Chem. Phys. Lett. 314, 488-495 (1999).
    [CrossRef]
  62. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  63. C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
    [CrossRef] [PubMed]
  64. M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
    [CrossRef] [PubMed]
  65. J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544-6547 (2009).
    [CrossRef] [PubMed]
  66. F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918-2920 (2006).
    [CrossRef] [PubMed]
  67. K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008).
    [CrossRef] [PubMed]

2009 (17)

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60, 21-38 (2009).
[CrossRef]

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231-8251 (2009).
[CrossRef] [PubMed]

S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42, 1239-1249 (2009).
[CrossRef] [PubMed]

R. J. D. Miller, A. Paarmann, and V. I. Prokhorenko, “Diffractive optics based four-wave, six-wave, V-wave nonlinear spectroscopy,” Acc. Chem. Res. 42, 1442-1451 (2009).
[CrossRef] [PubMed]

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “New advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control,” Adv. Chem. Phys. 141, 1-28 (2009).
[CrossRef]

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At., Mol., Opt. Phys. 57, 249-321 (2009).
[CrossRef]

E. R. Andresen and P. Hamm, “Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin,” J. Phys. Chem. B 113, 6520-6527 (2009).
[CrossRef] [PubMed]

N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42, 1352-1363 (2009).
[CrossRef] [PubMed]

W. Zhuang, T. Hayashi, and S. Mukamel, “Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges,” Angew. Chem. Int. Ed. 48, 3750-3781 (2009).
[CrossRef]

C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally-selective geminate rebinding dynamics of solvent-caged radicals studied with non-equilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131, 13590-13591 (2009).
[CrossRef] [PubMed]

K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, “Removing cross-phase modulation from midinfrared chirped-pulse upconversion spectra,” Opt. Express 17, 18738-18744 (2009).
[CrossRef]

L. J. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17, 14395-14404 (2009).
[CrossRef] [PubMed]

P. E. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34, 1390-1392 (2009).
[CrossRef] [PubMed]

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
[CrossRef] [PubMed]

J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544-6547 (2009).
[CrossRef] [PubMed]

2008 (10)

K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008).
[CrossRef] [PubMed]

M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
[CrossRef] [PubMed]

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420-17428 (2008).
[CrossRef] [PubMed]

E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665-2667 (2008).
[CrossRef] [PubMed]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008).
[CrossRef]

C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008).
[CrossRef] [PubMed]

K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, “Characterization of mid-infrared femtosecond pulses [invited],” J. Opt. Soc. Am. B 25, A54-A62 (2008).
[CrossRef]

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331-1418 (2008).
[CrossRef] [PubMed]

V. Cervetto, P. Hamm, and J. Helbing, “Transient 2D-IR spectroscopy of thiopeptide isomerization,” J. Phys. Chem. B 112, 8398-8405 (2008).
[CrossRef] [PubMed]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291-317 (2008).
[CrossRef]

2007 (6)

J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
[CrossRef] [PubMed]

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped-pulse upconversion,” Opt. Lett. 32, 713-715 (2007).
[CrossRef] [PubMed]

M. F. DeCamp, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Single-shot two-dimensional infrared spectroscopy,” Opt. Express 15, 233-241 (2007).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007).
[CrossRef] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966-2968 (2007).
[CrossRef] [PubMed]

S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007).
[CrossRef]

2006 (2)

S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006).
[CrossRef] [PubMed]

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918-2920 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (3)

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

2001 (5)

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001).
[CrossRef]

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001).
[CrossRef]

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213-230 (2001).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

2000 (4)

C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000).
[CrossRef]

A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A 104, 4247-4255 (2000).
[CrossRef]

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, “Increased-bandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal,” Opt. Express 7, 342-349 (2000).
[CrossRef] [PubMed]

D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210-1212 (2000).
[CrossRef]

1999 (2)

K. Okumura, A. Tokmakoff, and Y. Tanimura, “Two-dimensional line-shape analysis of photon-echo signal,” Chem. Phys. Lett. 314, 488-495 (1999).
[CrossRef]

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489-10505 (1999).
[CrossRef]

1998 (2)

1996 (1)

1995 (1)

1994 (2)

T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broad-band infrared spectrometer,” Opt. Lett. 19, 129-131 (1994).
[CrossRef] [PubMed]

T. P. Dougherty and E. J. Heilweil, “Transient infrared-spectroscopy of (η5−C5H5)Co(CO)2 photoproduct reactions in hydrocarbon solutions,” J. Chem. Phys. 100, 4006-4009 (1994).
[CrossRef]

1989 (1)

1988 (1)

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “Iron carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared-spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 85, 5062-5066 (1988).
[CrossRef] [PubMed]

1987 (1)

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “A new method for picosecond time-resolved infrared-spectroscopy--applications to CO photodissociation from iron porphyrins,” Chem. Phys. Lett. 138, 110-114 (1987).
[CrossRef]

1978 (1)

K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978).
[CrossRef]

1976 (1)

Abbas, M. M.

Albrecht, A. W.

Andresen, E. R.

E. R. Andresen and P. Hamm, “Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin,” J. Phys. Chem. B 113, 6520-6527 (2009).
[CrossRef] [PubMed]

Anna, J. M.

C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
[CrossRef] [PubMed]

J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544-6547 (2009).
[CrossRef] [PubMed]

M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
[CrossRef] [PubMed]

Armstrong, M. R.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

Bachmann, P.

K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978).
[CrossRef]

Backus, E. H. G.

Baiz, C. R.

C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally-selective geminate rebinding dynamics of solvent-caged radicals studied with non-equilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131, 13590-13591 (2009).
[CrossRef] [PubMed]

C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008).
[CrossRef] [PubMed]

M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
[CrossRef] [PubMed]

Baum, P.

Belabas, N.

K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 30, 1228-1230 (2005).
[CrossRef] [PubMed]

C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000).
[CrossRef]

Bodenhausen, G.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, 1987).

Bonvalet, A.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Bredenbeck, J.

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291-317 (2008).
[CrossRef]

J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
[CrossRef] [PubMed]

Cervetto, V.

V. Cervetto, P. Hamm, and J. Helbing, “Transient 2D-IR spectroscopy of thiopeptide isomerization,” J. Phys. Chem. B 112, 8398-8405 (2008).
[CrossRef] [PubMed]

Cheng, Y. C.

N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42, 1352-1363 (2009).
[CrossRef] [PubMed]

Cheriaux, G.

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331-1418 (2008).
[CrossRef] [PubMed]

Cook, D. J.

DeCamp, M. E.

DeCamp, M. F.

DeFlores, L. P.

Demirdoven, N.

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

Demirdöven, N.

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001).
[CrossRef]

Ding, F.

Dorrer, C.

C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000).
[CrossRef]

Dougherty, T. P.

T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broad-band infrared spectrometer,” Opt. Lett. 19, 129-131 (1994).
[CrossRef] [PubMed]

T. P. Dougherty and E. J. Heilweil, “Transient infrared-spectroscopy of (η5−C5H5)Co(CO)2 photoproduct reactions in hydrocarbon solutions,” J. Chem. Phys. 100, 4006-4009 (1994).
[CrossRef]

Ernst, R. R.

K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978).
[CrossRef]

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, 1987).

Faeder, S. M. G.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

Fayer, M. D.

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60, 21-38 (2009).
[CrossRef]

K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008).
[CrossRef] [PubMed]

S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007).
[CrossRef]

Ferro, A. A.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

Fleming, G. R.

N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42, 1352-1363 (2009).
[CrossRef] [PubMed]

Gallagher, S. M.

Gallagher Faeder, S. M.

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489-10505 (1999).
[CrossRef]

Garrett-Roe, S.

Geva, E.

C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
[CrossRef] [PubMed]

Ginsberg, N. S.

N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42, 1352-1363 (2009).
[CrossRef] [PubMed]

Glownia, J. H.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008).
[CrossRef]

Golonzka, O.

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001).
[CrossRef]

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001).
[CrossRef]

Gu, X.

Hamm, P.

E. R. Andresen and P. Hamm, “Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin,” J. Phys. Chem. B 113, 6520-6527 (2009).
[CrossRef] [PubMed]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291-317 (2008).
[CrossRef]

V. Cervetto, P. Hamm, and J. Helbing, “Transient 2D-IR spectroscopy of thiopeptide isomerization,” J. Phys. Chem. B 112, 8398-8405 (2008).
[CrossRef] [PubMed]

E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665-2667 (2008).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
[CrossRef] [PubMed]

Hansen, P. A.

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “Iron carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared-spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 85, 5062-5066 (1988).
[CrossRef] [PubMed]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “A new method for picosecond time-resolved infrared-spectroscopy--applications to CO photodissociation from iron porphyrins,” Chem. Phys. Lett. 138, 110-114 (1987).
[CrossRef]

Hayashi, T.

W. Zhuang, T. Hayashi, and S. Mukamel, “Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges,” Angew. Chem. Int. Ed. 48, 3750-3781 (2009).
[CrossRef]

Heilweil, E. J.

Helbing, J.

V. Cervetto, P. Hamm, and J. Helbing, “Transient 2D-IR spectroscopy of thiopeptide isomerization,” J. Phys. Chem. B 112, 8398-8405 (2008).
[CrossRef] [PubMed]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291-317 (2008).
[CrossRef]

J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
[CrossRef] [PubMed]

Hochstrasser, R. M.

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231-8251 (2009).
[CrossRef] [PubMed]

D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210-1212 (2000).
[CrossRef]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “Iron carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared-spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 85, 5062-5066 (1988).
[CrossRef] [PubMed]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “A new method for picosecond time-resolved infrared-spectroscopy--applications to CO photodissociation from iron porphyrins,” Chem. Phys. Lett. 138, 110-114 (1987).
[CrossRef]

Howard, W. M.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

Hybl, J. D.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

Hybl, T. D.

Joffre, L.

C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000).
[CrossRef]

Joffre, M.

Jonas, D. M.

K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 30, 1228-1230 (2005).
[CrossRef] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef] [PubMed]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489-10505 (1999).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals,” J. Opt. Soc. Am. B 15, 2338-2345 (1998).
[CrossRef]

Jones, K. C.

Khalil, M.

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213-230 (2001).
[CrossRef]

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001).
[CrossRef]

Kim, K. Y.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008).
[CrossRef]

Kim, Y. S.

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231-8251 (2009).
[CrossRef] [PubMed]

Kimmel, M.

Kostiuk, T.

Kubarych, K. J.

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At., Mol., Opt. Phys. 57, 249-321 (2009).
[CrossRef]

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally-selective geminate rebinding dynamics of solvent-caged radicals studied with non-equilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131, 13590-13591 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009).
[CrossRef] [PubMed]

C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
[CrossRef] [PubMed]

J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544-6547 (2009).
[CrossRef] [PubMed]

M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
[CrossRef] [PubMed]

K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, “Characterization of mid-infrared femtosecond pulses [invited],” J. Opt. Soc. Am. B 25, A54-A62 (2008).
[CrossRef]

C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008).
[CrossRef] [PubMed]

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped-pulse upconversion,” Opt. Lett. 32, 713-715 (2007).
[CrossRef] [PubMed]

K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 30, 1228-1230 (2005).
[CrossRef] [PubMed]

Kwak, K.

K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008).
[CrossRef] [PubMed]

S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007).
[CrossRef]

Landin, B. L.

Lee, K. F.

Lepetit, L.

Lewis, K. L. M.

Likforman, J. P.

C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000).
[CrossRef]

Ling, Y. L.

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Lochbrunner, S.

Loparo, J. J.

S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006).
[CrossRef] [PubMed]

Ma, L. J.

McCanne, R.

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally-selective geminate rebinding dynamics of solvent-caged radicals studied with non-equilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131, 13590-13591 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009).
[CrossRef] [PubMed]

C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008).
[CrossRef] [PubMed]

M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
[CrossRef] [PubMed]

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped-pulse upconversion,” Opt. Lett. 32, 713-715 (2007).
[CrossRef] [PubMed]

McRobbie, P. L.

C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
[CrossRef] [PubMed]

Miller, R. J. D.

R. J. D. Miller, A. Paarmann, and V. I. Prokhorenko, “Diffractive optics based four-wave, six-wave, V-wave nonlinear spectroscopy,” Acc. Chem. Res. 42, 1442-1451 (2009).
[CrossRef] [PubMed]

Moore, A.

Moore, J. N.

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “Iron carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared-spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 85, 5062-5066 (1988).
[CrossRef] [PubMed]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “A new method for picosecond time-resolved infrared-spectroscopy--applications to CO photodissociation from iron porphyrins,” Chem. Phys. Lett. 138, 110-114 (1987).
[CrossRef]

Mukamel, S.

W. Zhuang, T. Hayashi, and S. Mukamel, “Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges,” Angew. Chem. Int. Ed. 48, 3750-3781 (2009).
[CrossRef]

Mukherjee, P.

Myers, J. A.

Nagayama, K.

K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978).
[CrossRef]

Nee, M. J.

C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009).
[CrossRef] [PubMed]

C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008).
[CrossRef] [PubMed]

M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
[CrossRef] [PubMed]

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped-pulse upconversion,” Opt. Lett. 32, 713-715 (2007).
[CrossRef] [PubMed]

Nicodemus, R. A.

Nienhaus, G. U.

J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
[CrossRef] [PubMed]

Nienhaus, K.

J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
[CrossRef] [PubMed]

Nuernberger, P.

Ogilvie, J. P.

Ogilvie, K. W.

Okumura, K.

K. Okumura, A. Tokmakoff, and Y. Tanimura, “Two-dimensional line-shape analysis of photon-echo signal,” Chem. Phys. Lett. 314, 488-495 (1999).
[CrossRef]

O'Shea, P.

Paarmann, A.

R. J. D. Miller, A. Paarmann, and V. I. Prokhorenko, “Diffractive optics based four-wave, six-wave, V-wave nonlinear spectroscopy,” Acc. Chem. Res. 42, 1442-1451 (2009).
[CrossRef] [PubMed]

Park, S.

S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007).
[CrossRef]

Petersen, P. B.

P. B. Petersen and A. Tokmakoff, “A source for ultrafast continuum infrared and terahertz radiation,” submitted to Opt. Lett. (2010).

Piner, E. L.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

Prokhorenko, V. I.

R. J. D. Miller, A. Paarmann, and V. I. Prokhorenko, “Diffractive optics based four-wave, six-wave, V-wave nonlinear spectroscopy,” Acc. Chem. Res. 42, 1442-1451 (2009).
[CrossRef] [PubMed]

Rajaram, B.

Ramasesha, K.

S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42, 1239-1249 (2009).
[CrossRef] [PubMed]

Reed, E. J.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

Riedle, E.

Roberts, J. C.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

Roberts, S. T.

S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42, 1239-1249 (2009).
[CrossRef] [PubMed]

S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006).
[CrossRef] [PubMed]

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008).
[CrossRef]

Rosenfeld, D. E.

K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008).
[CrossRef] [PubMed]

Ross, M. R.

J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544-6547 (2009).
[CrossRef] [PubMed]

Shim, S. H.

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “New advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control,” Adv. Chem. Phys. 141, 1-28 (2009).
[CrossRef]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Slattery, O.

Smith, A. V.

A. V. Smith, “Snlo: free software for modeling nonlinear frequency conversion processes in nonlinear crystals,” http://www.as-photonics.com/snlo.html.

Strasfeld, D. B.

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “New advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control,” Adv. Chem. Phys. 141, 1-28 (2009).
[CrossRef]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Tang, X.

Tanimura, Y.

K. Okumura, A. Tokmakoff, and Y. Tanimura, “Two-dimensional line-shape analysis of photon-echo signal,” Chem. Phys. Lett. 314, 488-495 (1999).
[CrossRef]

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008).
[CrossRef]

Tekavec, P. E.

Tekavec, P. F.

Tokmakoff, A.

S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42, 1239-1249 (2009).
[CrossRef] [PubMed]

M. F. DeCamp, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Single-shot two-dimensional infrared spectroscopy,” Opt. Express 15, 233-241 (2007).
[CrossRef] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966-2968 (2007).
[CrossRef] [PubMed]

S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006).
[CrossRef] [PubMed]

M. E. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett. 30, 1818-1820 (2005).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213-230 (2001).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001).
[CrossRef]

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001).
[CrossRef]

A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A 104, 4247-4255 (2000).
[CrossRef]

K. Okumura, A. Tokmakoff, and Y. Tanimura, “Two-dimensional line-shape analysis of photon-echo signal,” Chem. Phys. Lett. 314, 488-495 (1999).
[CrossRef]

P. B. Petersen and A. Tokmakoff, “A source for ultrafast continuum infrared and terahertz radiation,” submitted to Opt. Lett. (2010).

Trebino, R.

Wokaun, A.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, 1987).

Wuetrich, K.

K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978).
[CrossRef]

Zanni, M. T.

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “New advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control,” Adv. Chem. Phys. 141, 1-28 (2009).
[CrossRef]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007).
[CrossRef] [PubMed]

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918-2920 (2006).
[CrossRef] [PubMed]

Zhuang, W.

W. Zhuang, T. Hayashi, and S. Mukamel, “Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges,” Angew. Chem. Int. Ed. 48, 3750-3781 (2009).
[CrossRef]

Acc. Chem. Res. (4)

N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42, 1352-1363 (2009).
[CrossRef] [PubMed]

S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42, 1239-1249 (2009).
[CrossRef] [PubMed]

R. J. D. Miller, A. Paarmann, and V. I. Prokhorenko, “Diffractive optics based four-wave, six-wave, V-wave nonlinear spectroscopy,” Acc. Chem. Res. 42, 1442-1451 (2009).
[CrossRef] [PubMed]

C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009).
[CrossRef] [PubMed]

Adv. At., Mol., Opt. Phys. (1)

J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At., Mol., Opt. Phys. 57, 249-321 (2009).
[CrossRef]

Adv. Chem. Phys. (1)

D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “New advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control,” Adv. Chem. Phys. 141, 1-28 (2009).
[CrossRef]

Angew. Chem. Int. Ed. (1)

W. Zhuang, T. Hayashi, and S. Mukamel, “Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges,” Angew. Chem. Int. Ed. 48, 3750-3781 (2009).
[CrossRef]

Annu. Rev. Phys. Chem. (3)

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60, 21-38 (2009).
[CrossRef]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291-317 (2008).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000).
[CrossRef]

Chem. Phys. (1)

M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213-230 (2001).
[CrossRef]

Chem. Phys. Lett. (3)

K. Okumura, A. Tokmakoff, and Y. Tanimura, “Two-dimensional line-shape analysis of photon-echo signal,” Chem. Phys. Lett. 314, 488-495 (1999).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307-313 (1998).
[CrossRef]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “A new method for picosecond time-resolved infrared-spectroscopy--applications to CO photodissociation from iron porphyrins,” Chem. Phys. Lett. 138, 110-114 (1987).
[CrossRef]

Chem. Rev. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331-1418 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally-selective geminate rebinding dynamics of solvent-caged radicals studied with non-equilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131, 13590-13591 (2009).
[CrossRef] [PubMed]

J. Chem. Phys. (6)

T. P. Dougherty and E. J. Heilweil, “Transient infrared-spectroscopy of (η5−C5H5)Co(CO)2 photoproduct reactions in hydrocarbon solutions,” J. Chem. Phys. 100, 4006-4009 (1994).
[CrossRef]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606-6622 (2001).
[CrossRef]

K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008).
[CrossRef] [PubMed]

M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008).
[CrossRef] [PubMed]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001).
[CrossRef]

S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006).
[CrossRef] [PubMed]

J. Magn. Reson. (1)

K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (6)

C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A 104, 4247-4255 (2000).
[CrossRef]

S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489-10505 (1999).
[CrossRef]

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001).
[CrossRef]

J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544-6547 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

E. R. Andresen and P. Hamm, “Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin,” J. Phys. Chem. B 113, 6520-6527 (2009).
[CrossRef] [PubMed]

V. Cervetto, P. Hamm, and J. Helbing, “Transient 2D-IR spectroscopy of thiopeptide isomerization,” J. Phys. Chem. B 112, 8398-8405 (2008).
[CrossRef] [PubMed]

Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231-8251 (2009).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007).
[CrossRef]

Nat. Photonics (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008).
[CrossRef]

Nat. Phys. (1)

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (13)

P. E. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34, 1390-1392 (2009).
[CrossRef] [PubMed]

D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210-1212 (2000).
[CrossRef]

E. J. Heilweil, “Ultrashort-pulse multichannel infrared-spectroscopy using broad-band frequency-conversion in LiIO3,” Opt. Lett. 14, 551-553 (1989).
[CrossRef] [PubMed]

T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broad-band infrared spectrometer,” Opt. Lett. 19, 129-131 (1994).
[CrossRef] [PubMed]

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped-pulse upconversion,” Opt. Lett. 32, 713-715 (2007).
[CrossRef] [PubMed]

C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008).
[CrossRef] [PubMed]

M. E. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett. 30, 1818-1820 (2005).
[CrossRef] [PubMed]

K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 30, 1228-1230 (2005).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10 fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686-1688 (2004).
[CrossRef] [PubMed]

L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21, 564-566 (1996).
[CrossRef] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966-2968 (2007).
[CrossRef] [PubMed]

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918-2920 (2006).
[CrossRef] [PubMed]

E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665-2667 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007).
[CrossRef] [PubMed]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “Iron carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared-spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 85, 5062-5066 (1988).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Other (4)

P. B. Petersen and A. Tokmakoff, “A source for ultrafast continuum infrared and terahertz radiation,” submitted to Opt. Lett. (2010).

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, 1987).

A. V. Smith, “Snlo: free software for modeling nonlinear frequency conversion processes in nonlinear crystals,” http://www.as-photonics.com/snlo.html.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

2DIR pulse sequence. (Bottom) Box beam geometry showing the k = k 1 + k 2 + k 3 rephasing signal.

Fig. 2
Fig. 2

(Top) Chirped-pulse amplitude (undersampled) and phase. The dashed rectangle shows the temporal extent of the IR fields. (Bottom) Real part of the amplitude of the LO and the emitted echo signal for the case of t 1 = t 2 = 0 .

Fig. 3
Fig. 3

(Top) Sonogram of the LO and signal fields, separated in time by Δ t , superposed on a cartoon sonogram of the positively chirped near-IR pulse. (Bottom) Simulated sonogram of the upconverted field; the dotted line indicates the linear chirp of the signal imparted by the chirped pulse.

Fig. 4
Fig. 4

Simulated RDC absolute value (a), real (b), and imaginary (c) parts of the echo signal as would be measured directly (blue) and using CPU (green).

Fig. 5
Fig. 5

Steps required for removal of the distortions caused by CPU using simulated data for the RDC system (see text for details). Blue (orange) boxes correspond to data in the frequency (time) domain. Final panel shows real and imaginary amplitudes of the signal for the corrected data (black) versus the exact simulation (blue).

Fig. 6
Fig. 6

Normalized absolute value (a), real (b), and imaginary (c) amplitudes of a slice along ω 3 at ω 1 = 2015 cm 1 for the rephasing spectrum of Mn 2 ( CO ) 10 at t 2 = 5 ps for corrected (red) and uncorrected (black) data.

Fig. 7
Fig. 7

(a) Absolute value of the Fourier transform of the uncalibrated corrected (red) and uncorrected (black) data for the pixel corresponding to 2015 cm 1 . (b) Absolute value of the Fourier transform of the calibrated uncorrected (black) and corrected (red) data.

Fig. 8
Fig. 8

Corrected (red) and uncorrected (black) pump-probe spectra of Mn 2 ( CO ) 10 at a delay time of 5 ps.

Fig. 9
Fig. 9

(a) Absorptive 2DIR spectrum of Mn 2 ( CO ) 10 at t 2 = 5   ps . (b) Normalized projections of the absolute value of the absorptive (black), rephasing (red), and nonrephasing (blue) spectra onto ω 1 . (c) Projection of the absorptive spectrum (black) onto ω 3 and the corrected pump-probe spectrum (red).

Fig. 10
Fig. 10

Absorptive 2DIR spectrum with the distortions from the chirped pulse removed (a) and not removed (b). (c) Slice along ω 3 at ω 1 = 2015 cm 1 for the corrected (red) and uncorrected (black) data. Distortions along the ω 3 axis are indicated with arrows.

Fig. 11
Fig. 11

Absorptive 2DIR spectra of Mn 2 ( CO ) 10 in methanol at (right) t 2 = 200   fs and (left) t 2 = 10   ps .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E CPU ( t ) = [ E s ( t ) + E LO ( t ) ] E CP ( t ) .
S ( ω 1 , t 2 , ω 3 ) = Re [ 0 d t 1 0 d t 3 S R ( t 1 , t 2 , t 3 ) e i ω 3 t 3 e i ω 1 t 1 + 0 d t 1 0 d t 3 S NR ( t 1 , t 2 , t 3 ) e i ω 3 t 3 e i ω 1 t 1 ] .

Metrics