Abstract

A comparative study of electronic lenses (caused by population change of ground and excited states having different polarizabilities) and thermal lenses induced in Yb:YAG and Nd:YAG rods and disks under lasing and nonlasing conditions is carried out. The transient electronic lens can predominate over the thermal one in the pulsed-pump regime, whereas the stationary thermal lens may be predominant at CW broad pumping. The electronic lens effect is stronger in Yb:YAG than in Nd:YAG crystal.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  2. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
    [CrossRef]
  3. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34, 2381-2395 (2001).
    [CrossRef]
  4. A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
    [CrossRef]
  5. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
    [CrossRef]
  6. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26, 1002-1007 (2009).
    [CrossRef]
  7. H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007).
    [CrossRef]
  8. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis of thermal focal length on Nd:YAG rods,” Appl. Opt. 46, 6655-6661 (2007).
    [CrossRef] [PubMed]
  9. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
    [CrossRef]
  10. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
    [CrossRef]
  11. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763-765 (2005).
    [CrossRef]
  12. D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32, 665-667 (2007).
    [CrossRef] [PubMed]
  13. R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008).
    [CrossRef]
  14. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
    [CrossRef]
  15. J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74, 235108-235118 (2006).
    [CrossRef]
  16. N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
    [CrossRef]
  17. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Index-of-refraction change in optically pumped solid-state laser materials,” Opt. Lett. 14, 1204-1206 (1989).
    [CrossRef] [PubMed]
  18. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1986).
  19. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
    [CrossRef]
  20. B. A. Boly and J. H. Weiner, Theory of Thermal Stresses (Wiley, 1960).
  21. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990).
    [CrossRef]
  22. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
    [CrossRef]
  23. T. A. Planchon, W. Amir, C. Childress, J. A. Squier, and C. G. Durfee, “Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier,” Opt. Express 16, 18557-18564 (2008).
    [CrossRef]

2009 (2)

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26, 1002-1007 (2009).
[CrossRef]

2008 (2)

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008).
[CrossRef]

T. A. Planchon, W. Amir, C. Childress, J. A. Squier, and C. G. Durfee, “Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier,” Opt. Express 16, 18557-18564 (2008).
[CrossRef]

2007 (3)

2006 (3)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74, 235108-235118 (2006).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
[CrossRef]

2005 (1)

2004 (1)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

2003 (2)

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

2001 (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34, 2381-2395 (2001).
[CrossRef]

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

1998 (1)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990).
[CrossRef]

1989 (1)

Ai¨t-Ameur, K.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
[CrossRef]

Amaro, F. D.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Amir, W.

Andrade, A. A.

Antipov, O. L.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008).
[CrossRef]

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763-765 (2005).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Antognini, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

Biraben, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Boly, B. A.

B. A. Boly and J. H. Weiner, Theory of Thermal Stresses (Wiley, 1960).

Bredikhin, D. V.

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763-765 (2005).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1986).

Catunda, T.

Chase, L. L.

Chen, W.

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Chénais, S.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

Childress, C.

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34, 2381-2395 (2001).
[CrossRef]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Dax, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Doualan, J. L.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008).
[CrossRef]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

Durfee, C. G.

Eremeykin, O. N.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008).
[CrossRef]

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763-765 (2005).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990).
[CrossRef]

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Fujita, H.

H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007).
[CrossRef]

Gan, A.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Georges, P.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

Giesen, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Graf, T.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Hanna, D. C.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

Hänsch, T. W.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Haouas, E.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
[CrossRef]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Indelicato, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990).
[CrossRef]

Ivakin, E. V.

Jacinto, C.

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1986).

Julien, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Kao, C.-Y.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

Knowles, P. E.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Kottmann, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Kuznetsov, M. S.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Le Bigot, E.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Li, L.

Liu, Y.-W.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Lucas-Leclin, G.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

Ludhova, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Margerie, J.

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74, 235108-235118 (2006).
[CrossRef]

Ménard, V.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
[CrossRef]

Messias, D. N.

Moncorgé, R.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
[CrossRef]

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74, 235108-235118 (2006).
[CrossRef]

Moschüring, N.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Mulhauser, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Myers, J. D.

Myers, M. J.

Nagtegaele, P.

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74, 235108-235118 (2006).
[CrossRef]

Nakatsuka, M.

H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007).
[CrossRef]

Nebel, T.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Nez, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Okada, H.

H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007).
[CrossRef]

Passilly, N.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
[CrossRef]

Payne, S. A.

Planchon, T. A.

Pohl, R.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Pollnau, M.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

Powell, R. C.

Rabinowitz, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Roger, J. P.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Savikin, A. P.

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763-765 (2005).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Schuhmann, K.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Schwob, C.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Shi, P.

Squier, J. A.

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Sukhadolau, A. V.

Takeuchi, N.

H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007).
[CrossRef]

Taqqu, D.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

Vorob'ev, V. A.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Weiner, J. H.

B. A. Boly and J. H. Weiner, Theory of Thermal Stresses (Wiley, 1960).

Wilke, G. D.

Yoshida, H.

H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007).
[CrossRef]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003).
[CrossRef]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34, 2381-2395 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007).
[CrossRef]

Opt. Commun. (2)

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (2)

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74, 235108-235118 (2006).
[CrossRef]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Other (4)

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
[CrossRef]

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1986).

B. A. Boly and J. H. Weiner, Theory of Thermal Stresses (Wiley, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy levels of Yb:YAG and Nd:YAG.

Fig. 2
Fig. 2

Lenses in CW-pumped rods (under non-lasing conditions) as a function of pump beam diameter for constant pump power.

Fig. 3
Fig. 3

(a) The spatial distribution of the population inversion in the middle-rod plane z = L 2 for various input amplified beam powers given in W. (b) Lenses in the Yb-doped rod under CW pumping as a function of the input amplified beam power. The pump beam diameter is twice as large as the amplified beam diameter.

Fig. 4
Fig. 4

Lenses in pulse-pumped rod (under non-lasing conditions) as a function of a pump pulse duration.

Fig. 5
Fig. 5

Lenses in CW-pumped disks (under non-lasing conditions) as a function of disk thickness for constant pump power and pump radius.

Fig. 6
Fig. 6

Lenses in pulse-pumped disks (under non-lasing conditions) as a function of a pump pulse duration for fixed end-face and non-fixed end face.

Tables (1)

Tables Icon

Table 1 Parameters of the Laser Crystals Used for Calculations

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

δ n = δ n e + δ n T .
δ n e = 2 π F L 2 n 0 Δ p δ N 2 ,
N 2 t = + σ 03 N 0 h ν 03 I p ( r , z , t ) σ 21 N 2 h ν 21 I a ( r , z , t ) N 2 τ 21 γ ASE τ 21 N 2 2 α up- conv N 2 2 ,
δ n T = ( n T ) δ T + δ n ph = [ ( n T ) + 2 n 0 3 α T C ] δ T ,
ρ C p T t K Δ T = h ν 43 N 4 w 43 + h ν 32 N 3 w 32 + h ν 10 N 1 w 10 ,
N 4 w 43 α up- conv N 2 2 ,
N 3 w 32 σ 03 N 0 h ν 03 I ( r , z , t ) ,
N 1 w 10 γ ASE N 2 2 + α up- conv N 2 2 + N 2 τ 21 .
K ξ T + H ( T T 0 ) = 0 ,
δ ( r , z ) = d z [ δ n + ( n 0 1 ) ε z z ] ,
D = 2 | ( Δ r 2 ) | r = 0 ,
Δ = 0 L [ δ ( 0 , z ) δ ( r , z ) ] .
D e = | 2 2 π F L 2 Δ p n 0 r 2 0 L [ N 2 ( 0 , z , t ) N 2 ( r , z , t ) ] d z | r = 0 ,
D T = 2 ( d n d T ) eff | r 2 0 L [ T ( 0 , z , t ) T ( r , z , t ) ] d z | r = 0 ,
σ max disk 2 α T E 4 Δ T max ,
σ max rod 2 α T E 4 ( 1 ν ) Δ T max ,
D e = 16 π F L 2 Δ p n 0 P τ 21 π h ν 03 0 L exp ( α z ) w p ( z ) 4 d z ,
D T = ( d n d T ) eff α P η h π K 0 L exp ( α z ) w p ( z ) 2 d z ,
d I p d z = σ 03 I p N 0 ,
d I a d z = σ 21 I a N 2 .
D T = { ν 32 + ν 10 ν 03 t ν 10 ν 03 τ [ 1 exp ( t τ 21 ) ] 21 } × 8 ( d n d T ) eff α P π c ρ 0 L exp ( α z ) w p ( z ) 4 d z .
D e = 16 π F L 2 Δ p n 0 P τ 21 π h ν 03 [ 1 exp ( t τ 21 ) ] 0 L exp ( α z ) w p ( z ) 4 d z .
D T = 4 [ n T + 2 n 0 3 α T C + α T ( n 0 1 ) ( 1 + ν ) ] × | r 2 0 L [ T ( 0 , z , t ) T ( r , z , t ) ] d z | r = 0 ,
κ r = ( 1 + ν ) κ T 2 ,
κ T = 12 α T L 3 0 L T ( 0 , z , t ) ( z L 2 ) d z .
D Σ = D e + D T + D m .

Metrics