Abstract

In this work we measure how photodarkening affects the optical efficiency for three different YbAl-doped silica fibers operating at 980nm, one of which is codoped with cerium. A volume Bragg grating is used for linewidth control and added rejection of amplified spontaneous emission. Several hours of degradation-resistant operation is obtained with the Ce-codoped fiber, while for the YbAl doped fibers a large drop in efficiency is observed within the first hour of operation. Our results show that YbCeAl-doped fibers could be excellent candidates for high-power 980nm fiber laser sources.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV transparency of the core glass,” Opt. Express 16, 1260-1268 (2008).
    [CrossRef] [PubMed]
  2. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32, 3352-3354 (2007).
    [CrossRef] [PubMed]
  3. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
    [CrossRef] [PubMed]
  4. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
    [CrossRef]
  5. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355-357 (1998).
    [CrossRef]
  6. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High-power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16, 17891-17902 (2008).
    [CrossRef] [PubMed]
  7. F. Roeser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W980 nm high brightness Yb-doped fiber laser,” Opt. Express 16, 17310-17318 (2008).
    [CrossRef]
  8. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
    [CrossRef]
  9. M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” in Fiber Lasers V: Technology, Systems, and Applications, (SPIE, 2008), 68731E-68738.
  10. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16, 15540-15545 (2008).
    [CrossRef] [PubMed]
  11. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34, 1285-1287 (2009).
    [CrossRef] [PubMed]
  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  13. P. Jelger and F. Laurell, “Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser,” Opt. Lett. 32, 3501-3503 (2007).
    [CrossRef] [PubMed]
  14. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fiber laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507-9512 (2008).
    [CrossRef] [PubMed]

2009

2008

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV transparency of the core glass,” Opt. Express 16, 1260-1268 (2008).
[CrossRef] [PubMed]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
[CrossRef] [PubMed]

P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fiber laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507-9512 (2008).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16, 15540-15545 (2008).
[CrossRef] [PubMed]

F. Roeser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W980 nm high brightness Yb-doped fiber laser,” Opt. Express 16, 17310-17318 (2008).
[CrossRef]

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High-power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16, 17891-17902 (2008).
[CrossRef] [PubMed]

2007

1998

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

1991

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Åberg, D.

Bello-Doua, R.

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

Boullet, J.

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

Cazaux, M.

Clarkson, W. A.

Cormier, E.

Desmarchelier, R.

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

Engholm, M.

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Hanna, D. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355-357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Hoffman, H. J.

Hotoleanu, M.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

Jauregui, C.

Jelger, P.

Jetschke, S.

Kirchhof, J.

Kliner, D. A. V.

Koplow, J. P.

Koponen, J.

Laurell, F.

Leich, M.

Limpert, J.

Minelly, J. D.

Nilsson, J.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355-357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Norin, L.

Paschotta, R.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355-357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

Roeser, F.

Saby, J.

Sahu, J. K.

Salin, F.

Schwuchow, A.

Söderlund, M.

Tropper, A. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355-357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Tünnermann, A.

Unger, S.

Wang, P.

Zaouter, Y.

Appl. Opt.

Appl. Phys. Lett.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid-core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113-061113 (2008).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Lightwave Technol.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” in Fiber Lasers V: Technology, Systems, and Applications, (SPIE, 2008), 68731E-68738.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic energy-level diagram of the Yb ion in silica.

Fig. 2
Fig. 2

Experimental setup with and without linewidth control. In the initial setup, an HR mirror was used as cavity reflector as indicated in the figure.

Fig. 3
Fig. 3

Normalized output power over time for the three fibers when lasing at 980 nm .

Fig. 4
Fig. 4

Spectral density of free-running and VBG-locked Yb Ce Al fiber laser. The resolution limit of the spectrum analyzer was 0.07 nm .

Fig. 5
Fig. 5

Emission spectrum over tuning range for Yb Ce Al fiber laser. The resolution limit of the spectrum analyzer was 0.07 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G 1030 = Γ 1030 Γ 980 σ e 1030 σ e 980 G 980 Γ 1030 Γ 915 σ e 1030 σ e 980 σ a 980 σ a 915 G 915 .
I transp 915 = h ν τ σ a 980 σ a 915 σ e 980 .

Metrics