Abstract

Characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters are systematically investigated. It is found that the asymmetrical double-sided teeth-shaped waveguide structure can realize the function of a two-wavelength filter, and its two wavelengths are linear with the depths of the two-sided teeth, respectively. It is also found that a staggered double-sided teeth-shaped structure exahibits a wide and sharp bandgap. Double-sided teeth-shaped filters are of ultracompact size, in the length of a few hundred nanometers. The finite-difference time-domain method is employed in the simulations. Our results may open a way to construct nanoscale waveguide filters for high-density nanoplasmonic integration circuits.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1998).
  2. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645-6650 (2005).
    [CrossRef] [PubMed]
  3. S. Xiao and N. A. Mortensens, “Resonant-tunneling-assisted crossing for subwavelength plasmonic slot waveguides,” Opt. Express 16, 14997-15005 (2008).
    [CrossRef] [PubMed]
  4. Z. Mei and D. Zhao, “Propagation of Laguerre-Gaussian and elegant Laguerre-Gaussian beams in apertured fractional Hankel transform systems,” J. Opt. Soc. Am. A 21, 2375-2381 (2004).
    [CrossRef]
  5. T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652-9659 (2005).
    [CrossRef] [PubMed]
  6. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  7. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795-10800 (2005).
    [CrossRef] [PubMed]
  8. H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
    [CrossRef]
  9. B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
    [CrossRef] [PubMed]
  10. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
    [CrossRef]
  11. B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
    [CrossRef]
  12. B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  13. W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
    [CrossRef]
  14. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
    [CrossRef]
  15. A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318-11323 (2006).
    [CrossRef] [PubMed]
  16. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475-1480 (2008).
    [CrossRef] [PubMed]
  17. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874-2876 (2008).
    [CrossRef] [PubMed]
  18. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  19. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Infrared Phys. Technol. 19, 91-93 (2007).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

2008 (4)

2007 (2)

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Infrared Phys. Technol. 19, 91-93 (2007).

2006 (5)

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318-11323 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

2005 (5)

2004 (2)

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

Deng, Q.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Du, C.

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Infrared Phys. Technol. 19, 91-93 (2007).

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Gao, H.

Gray, S.

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Infrared Phys. Technol. 19, 91-93 (2007).

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645-6650 (2005).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Infrared Phys. Technol. 19, 91-93 (2007).

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645-6650 (2005).
[CrossRef] [PubMed]

Hosseini, A.

Hossieni, A.

Huang, J.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Huang, X.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Huang, X.-G.

Lee, T.

Leosson, K.

Lin, W.

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

Lin, X.

Lin, X.-S.

Liu, L.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645-6650 (2005).
[CrossRef] [PubMed]

Luo, X.

Lv, Y.

Massoud, Y.

Mei, Z.

Mortensens, N. A.

Nejati, H.

Nikolajsen, T.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1998).

Shi, H.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[CrossRef] [PubMed]

Wang, C.

Wang, G.

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[CrossRef] [PubMed]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

Xiao, S.

Yao, H.

Zhao, D.

Zhao, H.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

Infrared Phys. Technol. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Infrared Phys. Technol. 19, 91-93 (2007).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Physica E (Amsterdam) (1)

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1998).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Real part of the effective index of refraction versus the width of a MIM slit waveguide structure. (b) Propagation length as a function of wavelength with different widths of a MIM slit waveguide structure.

Fig. 2
Fig. 2

(a) Schematic of a double-sided teeth-shaped nanoplasmonic waveguide. The double-sided teeth-shaped structure can be asymmetrical, if d 1 d 2 . (b) The transmission spectra of a symmetrical double-sided teeth-shaped waveguide filter with w t = 50 nm , d 1 = d 2 = 245 nm and of a single-sided teeth-shaped waveguide filter with w t = 50 nm , d 1 = 245 nm .

Fig. 3
Fig. 3

(a) Transmission spectra of the asymmetrical double-sided teeth-shaped waveguide filter for different tooth depths of d 2 with a fixed d 1 = 100 nm and w t = 50 nm . (b) Transmission spectra of the asymmetrical double-sided teeth-shaped waveguide filter for different tooth depths of d 1 with a fixed d 2 = 180 nm and w t = 50 nm .

Fig. 4
Fig. 4

Transmission spectra of the two single-tooth waveguide filters and an asymmetrical double-sided teeth-shaped structure with a given tooth width of w t = 50 nm and a slit width of w = 50 nm .

Fig. 5
Fig. 5

(a) Schematic of a staggered double-sided teeth-shaped nanoplasmonic waveguide with a staggered length of L s . (b) The transmittance of the staggered double-sided teeth-shaped waveguide filter with w t = 50 nm , d 1 = d 2 = 260.5 nm , L s = 250 nm .

Fig. 6
Fig. 6

Central wavelength of the bandgap as a function of the double-sided teeth depth of d at teeth width of 50 nm .

Fig. 7
Fig. 7

Transmittance of the two-sided staggered teeth-shaped waveguide filter for different staggered lengths with w t = 50 nm , d 1 = d 2 = 260.5 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϵ d k z 2 + ϵ m k z 1 coth ( i k z 1 2 w ) = 0 ,
ϵ m ( ω ) = ϵ ω p 2 ω ( ω + i γ ) .
λ m = 4 n eff d ( 2 m + 1 ) [ Δ φ ( λ ) ] π .

Metrics