Abstract

A very concise field-calibrated electro-optic probe using interference of modulated beams is presented. A model for interferometric electro-optic sensing with a sensor probe is proposed, utilizing the interference fringing slopes and field-induced electro-optic phase retardations. The sensing dynamic range is experimentally explored by investigating the modulation slopes and retardations with respect to the probe beam’s polarizations. The probe shows a dynamic range 45dB over the microstrip lines. This sensitivity is acceptable for realizing electric field imaging of radiative electronic devices. The absolute sensitivity of the probe is also determined with a micro-TEM cell that generates accurate electric fields with calculable strength for probe calibrations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. AP-34, 30-45 (1986).
    [CrossRef]
  2. D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-optic probing of microwave fields using a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115310 (2008).
    [CrossRef]
  3. H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C, 436-442 (2007).
    [CrossRef]
  4. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
    [CrossRef]
  5. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166 (2001).
    [CrossRef]
  6. D. Kalinowski, S. Redlich, and D. Jaeger, “Novel micromachined fiber-optic E-field sensor,” in Proceedings IEEE/LEOS Annual Meeting, Vol. 1 (IEEE, 1999), pp. 385-386 .
  7. S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
    [CrossRef]
  8. Sameer M. Chandani, “Fiber-based probe for electrooptic sampling,” IEEE Photonics Technol. Lett. 18, 1290-1292 (2006).
    [CrossRef]
  9. D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16, 21587-21597 (2008).
    [CrossRef] [PubMed]
  10. P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE J. Quantum Electron. 35, 7-11 (1999).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003), Ch. 8.
  12. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, “Electro-optic coefficients of lithium tantalite at near-infrared wavelengths,” J. Opt. Soc. Am. B 21, 1948-1952 (2004).
    [CrossRef]
  13. N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
    [CrossRef]
  14. M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16, 189-195 (1974).
    [CrossRef]

2009 (1)

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
[CrossRef]

2008 (2)

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-optic probing of microwave fields using a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16, 21587-21597 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

2006 (1)

Sameer M. Chandani, “Fiber-based probe for electrooptic sampling,” IEEE Photonics Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

2004 (1)

2001 (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166 (2001).
[CrossRef]

2000 (2)

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

1999 (1)

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE J. Quantum Electron. 35, 7-11 (1999).
[CrossRef]

1986 (1)

A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. AP-34, 30-45 (1986).
[CrossRef]

1974 (1)

M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16, 189-195 (1974).
[CrossRef]

Alleston, S. B.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE J. Quantum Electron. 35, 7-11 (1999).
[CrossRef]

Casson, J. L.

Chandani, Sameer M.

Sameer M. Chandani, “Fiber-based probe for electrooptic sampling,” IEEE Photonics Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

Crawford, M. L.

M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16, 189-195 (1974).
[CrossRef]

Crites, M. H.

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-optic probing of microwave fields using a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

Erasme, D.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE J. Quantum Electron. 35, 7-11 (1999).
[CrossRef]

Gahagan, K. T.

Gopalan, V.

Hoshino, S.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Iwanami, M.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Jaeger, D.

D. Kalinowski, S. Redlich, and D. Jaeger, “Novel micromachined fiber-optic E-field sensor,” in Proceedings IEEE/LEOS Annual Meeting, Vol. 1 (IEEE, 1999), pp. 385-386 .

Jain, R. K.

Kalinowski, D.

D. Kalinowski, S. Redlich, and D. Jaeger, “Novel micromachined fiber-optic E-field sensor,” in Proceedings IEEE/LEOS Annual Meeting, Vol. 1 (IEEE, 1999), pp. 385-386 .

Kang, J. S.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
[CrossRef]

Kang, N. W.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
[CrossRef]

Katehi, L. P. B.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Kim, D. C.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
[CrossRef]

Kim, J. H.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
[CrossRef]

Kishi, M.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Lee, D. J.

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-optic probing of microwave fields using a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16, 21587-21597 (2008).
[CrossRef] [PubMed]

Lee, J. G.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
[CrossRef]

Mitani, S.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Mueller, P. O.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE J. Quantum Electron. 35, 7-11 (1999).
[CrossRef]

Nagatsuma, T.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Park, H.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Redlich, S.

D. Kalinowski, S. Redlich, and D. Jaeger, “Novel micromachined fiber-optic E-field sensor,” in Proceedings IEEE/LEOS Annual Meeting, Vol. 1 (IEEE, 1999), pp. 385-386 .

Robinson, J. M.

Sander, R. K.

Scrymgeour, D. A.

Shimizu, N.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Togo, H.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Tsuchiya, M.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Vickers, A. J.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE J. Quantum Electron. 35, 7-11 (1999).
[CrossRef]

Wakana, S.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Whitaker, J. F.

D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16, 21587-21597 (2008).
[CrossRef] [PubMed]

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-optic probing of microwave fields using a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Yaghjian, A. G.

A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. AP-34, 30-45 (1986).
[CrossRef]

Yamazaki, E.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

Yang, K.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003), Ch. 8.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003), Ch. 8.

Appl. Phys. Lett. (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE J. Quantum Electron. 35, 7-11 (1999).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166 (2001).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Sameer M. Chandani, “Fiber-based probe for electrooptic sampling,” IEEE Photonics Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. AP-34, 30-45 (1986).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16, 189-195 (1974).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58, 1109-1113 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000).
[CrossRef]

IEICE Trans. Electron. (1)

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-optic probing of microwave fields using a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

Opt. Express (1)

Other (2)

D. Kalinowski, S. Redlich, and D. Jaeger, “Novel micromachined fiber-optic E-field sensor,” in Proceedings IEEE/LEOS Annual Meeting, Vol. 1 (IEEE, 1999), pp. 385-386 .

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003), Ch. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of interferometric electro-optic probe (The solid and dashed lines are the two dominant reflective components that determine the probe performance).

Fig. 2
Fig. 2

Simulated reflectance fringes of the probe in Fig. 1 versus bias phase retardation (in terms of wavelengths). (λ, 1550 1560 nm ; h = 0.1 mm ; solid curve, n o case; dashed curve, n e case).

Fig. 3
Fig. 3

Wavelength tunability of our DFB laser versus temperature. (The temperature was tuned accurately by thermo-electric PID control).

Fig. 4
Fig. 4

Measured reflectance fringes of the probe in Fig. 1 versus bias phase retardation (in terms of temperature-tuned wavelengths) (gray curve, n o case; black curve, n e case).

Fig. 5
Fig. 5

EO signal strength (black) and phase (gray) with respect to the interference fringe (points) for n e in Fig. 4.

Fig. 6
Fig. 6

Horizontally transverse (x-direction) near-electric-field patterns of microstrip lines. (a) photograph of the DUT (b) measured amplitude distribution in log scale ( 0 dB = 67.9 dBm ) (c) calibrated amplitude distribution in linear scale ( 1 2.42 kV m ) (d) phase distribution.

Fig. 7
Fig. 7

Experimental setup of all-fiber-based EO probe calibration system. (The gray and black lines are optical fibers and electrical connections, respectively).

Fig. 8
Fig. 8

Measured EO signal strength (black) and calculated electric field strength (gray) in the μ-TEM cell versus feeding power. (This relates the measured signals and the calculated fields).

Fig. 9
Fig. 9

Measured peak EO signal strength (black) and extracted electric field strength (gray) over the μ-striplines in Fig. 6 versus high feeding power.

Metrics