Abstract

We analyze vectorial wave mixing in a photorefractive crystal of cubic symmetry in different geometries of beam interactions—reflection, transmission, and orthogonal. It is shown that orthogonal geometry in contrast with others supports an efficient phase demodulation of a depolarized object wave in linear mode without using any polarization-filtering elements. As a result adaptive interferometers based on the orthogonal geometry can provide a higher signal-to-noise ratio due to lower noise and lower optical losses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Wagner and J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316-1326 (1987).
    [CrossRef]
  2. T. J. Hall, M. A. Fiddy, and M. S. Ner, “Detector for an optical-fiber acoustic sensor using dynamic holographic interferometry,” Opt. Lett. 5, 485-487 (1980).
    [CrossRef] [PubMed]
  3. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233-3235 (1991).
    [CrossRef]
  4. S. I. Stepanov, “Application of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994).
    [CrossRef]
  5. A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
    [CrossRef]
  6. S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Sensing of multimode-fiber strain by a dynamic photorefractive hologram,” Opt. Lett. 32, 1821-1823 (2007).
    [CrossRef] [PubMed]
  7. S. Di Girolamo, R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, “Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation,” Opt. Commun. 283, 128-131 (2010).
    [CrossRef]
  8. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
    [CrossRef]
  9. A. A. Kamshilin and A. I. Grachev, “Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field,” Appl. Phys. Lett. 81, 2923-2925 (2002).
    [CrossRef]
  10. H. J. Eichler, Y. Ding, and B. Smandek, “Photorefractive two-wave mixing in semiconductors of the 43m space group in general spatial orientation,” Phys. Rev. A 52, 2411-2418 (1995).
    [CrossRef] [PubMed]
  11. A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).
  12. M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.
  13. S. I. Stepanov, “Adaptive interferometry: a new area of applications of photorefractive crystals,” in International Trends in Optics, J.W.Goodman, ed. (Academic, 1991), pp. 125-140.
  14. S. M. Hughes and D. Z. Anderson, “Modulation-enhanced sensitivity of holographic interferometry,” Appl. Opt. 46, 7868-7871 (2007).
    [CrossRef] [PubMed]
  15. K. V. Shcherbin and M. B. Klein, “Adaptive interferometers with no external field using reflection gratings in CdTe:Ge at 1550 nm,” Opt. Commun. 282, 2580-2585 (2009).
    [CrossRef]
  16. P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
    [CrossRef]
  17. S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Fast adaptive interferometer on dynamic reflection hologram in CdTe:V,” Opt. Express 15, 545-555 (2007).
    [CrossRef] [PubMed]

2010

S. Di Girolamo, R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, “Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation,” Opt. Commun. 283, 128-131 (2010).
[CrossRef]

2009

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

K. V. Shcherbin and M. B. Klein, “Adaptive interferometers with no external field using reflection gratings in CdTe:Ge at 1550 nm,” Opt. Commun. 282, 2580-2585 (2009).
[CrossRef]

2007

2002

A. A. Kamshilin and A. I. Grachev, “Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field,” Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

1999

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

1995

H. J. Eichler, Y. Ding, and B. Smandek, “Photorefractive two-wave mixing in semiconductors of the 43m space group in general spatial orientation,” Phys. Rev. A 52, 2411-2418 (1995).
[CrossRef] [PubMed]

1994

S. I. Stepanov, “Application of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

1991

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

1989

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).

1987

1980

Anderson, D. Z.

Blouin, A.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

de Montmorillon, L. -A.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

Delaye, P.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

Di Girolamo, S.

Ding, Y.

H. J. Eichler, Y. Ding, and B. Smandek, “Photorefractive two-wave mixing in semiconductors of the 43m space group in general spatial orientation,” Phys. Rev. A 52, 2411-2418 (1995).
[CrossRef] [PubMed]

Drolet, D.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

Eichler, H. J.

H. J. Eichler, Y. Ding, and B. Smandek, “Photorefractive two-wave mixing in semiconductors of the 43m space group in general spatial orientation,” Phys. Rev. A 52, 2411-2418 (1995).
[CrossRef] [PubMed]

Fiddy, M. A.

Georges, M.

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Giet, S.

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Grachev, A. I.

A. A. Kamshilin and A. I. Grachev, “Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field,” Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

Hall, T. J.

Hughes, S. M.

Ing, R. K.

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Kamenov, V. P.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Kamshilin, A. A.

S. Di Girolamo, R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, “Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation,” Opt. Commun. 283, 128-131 (2010).
[CrossRef]

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Sensing of multimode-fiber strain by a dynamic photorefractive hologram,” Opt. Lett. 32, 1821-1823 (2007).
[CrossRef] [PubMed]

S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Fast adaptive interferometer on dynamic reflection hologram in CdTe:V,” Opt. Express 15, 545-555 (2007).
[CrossRef] [PubMed]

A. A. Kamshilin and A. I. Grachev, “Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field,” Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).

Klein, M. B.

K. V. Shcherbin and M. B. Klein, “Adaptive interferometers with no external field using reflection gratings in CdTe:Ge at 1550 nm,” Opt. Commun. 282, 2580-2585 (2009).
[CrossRef]

Kulchin, Y. N.

S. Di Girolamo, R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, “Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation,” Opt. Commun. 283, 128-131 (2010).
[CrossRef]

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Sensing of multimode-fiber strain by a dynamic photorefractive hologram,” Opt. Lett. 32, 1821-1823 (2007).
[CrossRef] [PubMed]

S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Fast adaptive interferometer on dynamic reflection hologram in CdTe:V,” Opt. Express 15, 545-555 (2007).
[CrossRef] [PubMed]

Launay, J. -C.

Lemaire, P.

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Miridonov, S. V.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).

Miteva, M. G.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).

Mokrushina, E. V.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).

Monchalin, J. P.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

Monchalin, J. -P.

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Ner, M. S.

Nippolainen, E.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Pauliat, G.

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Podivilov, E. V.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Prokofiev, V. V.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Ringhofer, K. H.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Romashko, R. V.

S. Di Girolamo, R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, “Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation,” Opt. Commun. 283, 128-131 (2010).
[CrossRef]

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Sensing of multimode-fiber strain by a dynamic photorefractive hologram,” Opt. Lett. 32, 1821-1823 (2007).
[CrossRef] [PubMed]

S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Fast adaptive interferometer on dynamic reflection hologram in CdTe:V,” Opt. Express 15, 545-555 (2007).
[CrossRef] [PubMed]

Roosen, G.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Scauflaire, V. S.

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Shamonina, E.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Shcherbin, K. V.

K. V. Shcherbin and M. B. Klein, “Adaptive interferometers with no external field using reflection gratings in CdTe:Ge at 1550 nm,” Opt. Commun. 282, 2580-2585 (2009).
[CrossRef]

Smandek, B.

H. J. Eichler, Y. Ding, and B. Smandek, “Photorefractive two-wave mixing in semiconductors of the 43m space group in general spatial orientation,” Phys. Rev. A 52, 2411-2418 (1995).
[CrossRef] [PubMed]

Spicer, J. B.

Stepanov, S. I.

S. I. Stepanov, “Application of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

S. I. Stepanov, “Adaptive interferometry: a new area of applications of photorefractive crystals,” in International Trends in Optics, J.W.Goodman, ed. (Academic, 1991), pp. 125-140.

Sturman, B. I.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Thizy, C.

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Wagner, J. W.

Weidner, E.

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

Appl. Opt.

Appl. Phys. Lett.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999).
[CrossRef]

A. A. Kamshilin and A. I. Grachev, “Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field,” Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

J. Appl. Phys.

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. Di Girolamo, R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, “Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation,” Opt. Commun. 283, 128-131 (2010).
[CrossRef]

K. V. Shcherbin and M. B. Klein, “Adaptive interferometers with no external field using reflection gratings in CdTe:Ge at 1550 nm,” Opt. Commun. 282, 2580-2585 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

H. J. Eichler, Y. Ding, and B. Smandek, “Photorefractive two-wave mixing in semiconductors of the 43m space group in general spatial orientation,” Phys. Rev. A 52, 2411-2418 (1995).
[CrossRef] [PubMed]

Phys. Rev. E

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Rep. Prog. Phys.

S. I. Stepanov, “Application of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

Sov. Phys. Tech. Phys.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).

Other

M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.

S. I. Stepanov, “Adaptive interferometry: a new area of applications of photorefractive crystals,” in International Trends in Optics, J.W.Goodman, ed. (Academic, 1991), pp. 125-140.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Transmission, (b) reflection, and (c) orthogonal geometries of TWM supporting anisotropic diffraction in a cubic PRC.

Fig. 2
Fig. 2

Oscilloscope traces of modulation voltage ( M ) and photodetector current ( D ) obtained in three geometries of VWM: (a) transmission, (b) reflection, and (c) orthogonal. Upper row: the object wave is linearly polarized; bottom row: the object wave is depolarized.

Tables (1)

Tables Icon

Table 1 Coupling Matrices in Different Geometries Which Support Anisotropic Diffraction

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ l A A = m κ H ̂ B , l B B = m κ H ̂ A , }
H i j = i | Δ ̂ | j ,     i , j = s , p ,     Δ α β = r α β χ K χ r 41 | K | ,     α , β , χ = 1 , 2 , 3 ,
Δ A = L A m κ H ̂ B ,
A ̃ = A + Δ A = A L A m κ H ̂ B .
A = ( a s a p   exp   i α ) ,     B = ( b s b p   exp   i δ ) ,
m = { a s b s + a p b p   exp [ i ( α δ ) ] } I 0 1 ,
I ̃ A = I A + | γ | 2 I B + Δ I ( ϕ ) ,
Δ I ( ϕ ) = 2 [ a s b p γ s   cos ( ϕ δ ) + a s b p γ p   cos ( ϕ α ) + a p b s γ s   cos ( ϕ + α ) + a p b s γ p   cos ( ϕ + δ ) ] .
Δ I ( ϕ ) 2 κ L A I 0 1 [ b s b p ( a s 2 a p 2 ) ϕ + sin   α a s a p ( b s 2 b p 2 ) ϕ + cos   α a s a p ( b s 2 + b p 2 ) ( 1 ϕ 2 / 2 ) ] .
m = a s b s I 0 1 .
I ̃ A = I A + γ s 2 2 I B + Δ I ( ϕ ) .
Δ I ( ϕ ) = 2 γ s [ a s b p ϕ sin   α a p b s ϕ + cos   α a p b s ( 1 ϕ 2 / 2 ) ] .

Metrics