Abstract

We present a photonic crystal (PhC) cavity based on a single hole defect filled with a sensitive absorbent layer for sensing applications. A preliminary study performed with the plane wave expansion method shows that the resonance peak of the cavity mode is 0.5 nm shifted for a 1 nm thickness variation of the sensitive layer. A Lorentz dispersion model implemented in a two-dimensional–finite difference time domain homemade code shows that the absorption of the layer can be exploited for enhancing the sensitivity of the sensor. With the proposed geometry, we find that a variation in the refractive index of 107 leads to a variation in the transmittivity of 23% at the resonance peak. This study is proposed for the development of a compact benzene sensor on a MgO doped lithium niobate PhC.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
    [CrossRef]
  2. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  3. T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
    [CrossRef]
  4. T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
    [CrossRef]
  5. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188-18193 (2008).
    [CrossRef] [PubMed]
  6. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
    [CrossRef] [PubMed]
  7. T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
    [CrossRef]
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  9. S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
    [CrossRef]
  10. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  11. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670-684 (2002).
    [PubMed]
  12. F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
    [CrossRef] [PubMed]
  13. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]
  14. J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.
  15. R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
    [CrossRef]
  16. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  17. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain (Artech House, 2005).
  18. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [CrossRef]
  19. I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
    [CrossRef]
  20. G. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16, 6302-6316 (2008).
    [CrossRef] [PubMed]
  21. M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416-1422 (2007).
    [CrossRef]
  22. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]

2008 (5)

2007 (3)

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416-1422 (2007).
[CrossRef]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

2006 (1)

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

2005 (2)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

2004 (3)

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

2002 (1)

1999 (1)

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Al Naboulsi, M.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Alzuaga, S.

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Baida, F.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Baida, F. I.

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Bennes, J.

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Bernal, M. -P.

Bhattacharya, P.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Biallo, D.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Bied-Charreton, C.

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Burr, G.

Chakrabarti, S.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Chakravarty, S.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Cherioux, F.

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Chow, E.

Ciccarella, G.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Colvin, V. L.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

de la Chapelle, M. -L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

De Sario, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

De Vittorio, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Diziain, S.

D'orazio, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Fan, X.

Fauchet, P. M.

Feisst, A.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Forchel, A.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

Geppert, T. M.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Girolami, G.

Glatthaar, R.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Grande, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Grimault, A. -S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Grot, A.

Guizal, B.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Hahn, P.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Hofling, S.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Jamois, C.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Kamp, M.

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Kang, C.

Kang, Y.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Kwon, S. -H.

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Lambrecht, A.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Lee, M. R.

Leray, I.

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Marrocco, V.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Meyerhoff, M. E.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Mirkarimi, L. W.

Mittleman, D. M.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Pagani, Y.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Painter, O.

Passaseo, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Pergande, D.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Petruzzelli, V.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Prasad, T.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

Prudenzano, F.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Qualtieri, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Rella, R.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Rhein, A. V.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Roussey, M.

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).

Salhi, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Schilling, J.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Schlereth, T. W.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Schweizer, S. L.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Siciliano, P.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Sigalas, M.

Song, B. -S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Spadavecchia, J.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Srinivasan, K.

Stichel, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Stomeo, T.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Sünner, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain (Artech House, 2005).

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Topolancik, J.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Valli, L.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Van Labeke, D.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Vasapollo, G.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Vernières, M. -C.

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Wehrspohn, R. B.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Weiss, S. M.

White, I. M.

Appl. Phys. Lett. (2)

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

J. Microsc. (1)

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Microelectron. Eng. (1)

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (1)

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Proc. SPIE (2)

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Sens. Actuators B (1)

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Sens. Actuators B Chem. (1)

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Other (3)

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain (Artech House, 2005).

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) SHD studied cavity, where dark gray corresponds to substrate ( ϵ b = 5.319 ) , light gray indicates the sensitive layer ( ϵ c = 2.775 ) , and white areas are air holes ( ϵ a = 1 ) . (b) Zoom-in made around the defect region where r is the defect radius, d is the thickness of the layer, R is the air hole radius, and a is the period of the PhC.

Fig. 2
Fig. 2

(a) Dispersion diagram of a triangular lattice without a defect, where a photonic bandgap gives rise between ω a / 2 π c = 0.334 and ω a / 2 π c = 0.415 . (b) Zoom-in on the photonic bandgap of the cavity where the resonant mode of the SHD cavity appears at ω a / 2 π c = 0.3761 .

Fig. 3
Fig. 3

Plot of resonance shift as function of monolayer optical thickness.

Fig. 4
Fig. 4

(a) Spectral variation of the extinction coefficient of the porphyrin layer; the solid line corresponds to the experimental data and the dashed line corresponds to the Lorentzian fitting. (b) Refraction index variation of the porphyrin layer.

Fig. 5
Fig. 5

(a) Scheme of the photonic structure simulated by FDTD where the light propagates in the Γ M direction. The incident Gaussian beam has a beam waist W 0 = 2 μ m . (b) Transmission spectrum of the PhC cavity, where the resonant mode appears in the photonic bandgap at λ 419.5   nm .

Fig. 6
Fig. 6

Variation in the transmittivity at the cavity mode for different values of Δ ε .

Fig. 7
Fig. 7

(a) and (b) present, respectively, the square root of the amplitude of the magnetic and electric fields, without considering the absorption effect. (d) and (e) present those for Δ ε = 8.6 × 10 3 (corresponding to 5000 ppm of benzene). [(c), (f)] Zoom-in at the defect region in the case of the electric field distribution.

Fig. 8
Fig. 8

(a) Transmittivity as a function of the resonance wavelength, where a slight red shift is obtained by decreasing Δ ε . (b) Transmittivity through the cavity as a function of Δ ε . Δ ε = 8.6 × 10 6 corresponds to the porphyrin layer without benzene. Δ ε = 8.6 × 10 5 corresponds to a presence of 50 ppm of benzene and Δ ε = 8.6 × 10 4 to a presence of 500 ppm of benzene.

Fig. 9
Fig. 9

(a) Refraction index and (b) extinction coefficient variation function of the weighting factor Δ ε calculated from Eqs. (4, 5), respectively.

Tables (1)

Tables Icon

Table 1 Parameters for the Lorentz Dispersion Model Described in Eq. (3)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ ( 0 ) = f 1 ( 1 ε a 1 ε c ) + f 2 ( 1 ε c 1 ε b ) + 1 ε b ,
κ ( G ) = 2 f 1 ( 1 ε a 1 ε c ) ( J 1 ( G R ) G R ) + 2 f 2 ( 1 ε c 1 ε b ) ( J 1 ( G ( R + d ) ) G ( R + d ) ) ,
ε L ( ω ) = ε Δ ε Ω L 2 ( ω 2 Ω L 2 ) + ı Γ L ω ,
n = 1 2 ( ε + ε 2 + Δ ε 2 Ω c 2 Γ L 2 ) ,
κ = 1 2 ( ε + ε 2 + Δ ε 2 Ω c 2 Γ L 2 ) .

Metrics