Abstract

We present a photonic crystal (PhC) cavity based on a single hole defect filled with a sensitive absorbent layer for sensing applications. A preliminary study performed with the plane wave expansion method shows that the resonance peak of the cavity mode is 0.5 nm shifted for a 1 nm thickness variation of the sensitive layer. A Lorentz dispersion model implemented in a two-dimensional–finite difference time domain homemade code shows that the absorption of the layer can be exploited for enhancing the sensitivity of the sensor. With the proposed geometry, we find that a variation in the refractive index of 107 leads to a variation in the transmittivity of 23% at the resonance peak. This study is proposed for the development of a compact benzene sensor on a MgO doped lithium niobate PhC.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
    [CrossRef]
  2. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  3. T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
    [CrossRef]
  4. T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
    [CrossRef]
  5. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188-18193 (2008).
    [CrossRef] [PubMed]
  6. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
    [CrossRef] [PubMed]
  7. T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
    [CrossRef]
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  9. S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
    [CrossRef]
  10. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  11. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670-684 (2002).
    [PubMed]
  12. F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
    [CrossRef] [PubMed]
  13. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]
  14. J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.
  15. R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
    [CrossRef]
  16. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  17. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain (Artech House, 2005).
  18. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [CrossRef]
  19. I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
    [CrossRef]
  20. G. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16, 6302-6316 (2008).
    [CrossRef] [PubMed]
  21. M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416-1422 (2007).
    [CrossRef]
  22. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]

2008 (5)

2007 (3)

M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416-1422 (2007).
[CrossRef]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

2006 (1)

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

2005 (2)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

2004 (3)

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

2002 (1)

1999 (1)

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Al Naboulsi, M.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Alzuaga, S.

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Baida, F.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Baida, F. I.

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Bennes, J.

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Bernal, M. -P.

Bhattacharya, P.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Biallo, D.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Bied-Charreton, C.

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Burr, G.

Chakrabarti, S.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Chakravarty, S.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Cherioux, F.

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Chow, E.

Ciccarella, G.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Colvin, V. L.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

de la Chapelle, M. -L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

De Sario, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

De Vittorio, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Diziain, S.

D'orazio, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Fan, X.

Fauchet, P. M.

Feisst, A.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Forchel, A.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

Geppert, T. M.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Girolami, G.

Glatthaar, R.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Grande, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Grimault, A. -S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Grot, A.

Guizal, B.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Hahn, P.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Hofling, S.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Jamois, C.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Kamp, M.

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Kang, C.

Kang, Y.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Kwon, S. -H.

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Lambrecht, A.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Lee, M. R.

Leray, I.

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Marrocco, V.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Meyerhoff, M. E.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Mirkarimi, L. W.

Mittleman, D. M.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Pagani, Y.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Painter, O.

Passaseo, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Pergande, D.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Petruzzelli, V.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Prasad, T.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

Prudenzano, F.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Qualtieri, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Rella, R.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Rhein, A. V.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Roussey, M.

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).

Salhi, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Schilling, J.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Schlereth, T. W.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Schweizer, S. L.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Siciliano, P.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Sigalas, M.

Song, B. -S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Spadavecchia, J.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Srinivasan, K.

Stichel, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Stomeo, T.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Sünner, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain (Artech House, 2005).

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Topolancik, J.

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

Valli, L.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Van Labeke, D.

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

Vasapollo, G.

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Vernières, M. -C.

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Wehrspohn, R. B.

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Weiss, S. M.

White, I. M.

Appl. Phys. Lett. (2)

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

J. Microsc. (1)

F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Microelectron. Eng. (1)

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (1)

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006).
[CrossRef]

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Proc. SPIE (2)

S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005).
[CrossRef]

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004).
[CrossRef]

Sens. Actuators B (1)

R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003).
[CrossRef]

Sens. Actuators B Chem. (1)

I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999).
[CrossRef]

Other (3)

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain (Artech House, 2005).

J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) SHD studied cavity, where dark gray corresponds to substrate ( ϵ b = 5.319 ) , light gray indicates the sensitive layer ( ϵ c = 2.775 ) , and white areas are air holes ( ϵ a = 1 ) . (b) Zoom-in made around the defect region where r is the defect radius, d is the thickness of the layer, R is the air hole radius, and a is the period of the PhC.

Fig. 2
Fig. 2

(a) Dispersion diagram of a triangular lattice without a defect, where a photonic bandgap gives rise between ω a / 2 π c = 0.334 and ω a / 2 π c = 0.415 . (b) Zoom-in on the photonic bandgap of the cavity where the resonant mode of the SHD cavity appears at ω a / 2 π c = 0.3761 .

Fig. 3
Fig. 3

Plot of resonance shift as function of monolayer optical thickness.

Fig. 4
Fig. 4

(a) Spectral variation of the extinction coefficient of the porphyrin layer; the solid line corresponds to the experimental data and the dashed line corresponds to the Lorentzian fitting. (b) Refraction index variation of the porphyrin layer.

Fig. 5
Fig. 5

(a) Scheme of the photonic structure simulated by FDTD where the light propagates in the Γ M direction. The incident Gaussian beam has a beam waist W 0 = 2 μ m . (b) Transmission spectrum of the PhC cavity, where the resonant mode appears in the photonic bandgap at λ 419.5   nm .

Fig. 6
Fig. 6

Variation in the transmittivity at the cavity mode for different values of Δ ε .

Fig. 7
Fig. 7

(a) and (b) present, respectively, the square root of the amplitude of the magnetic and electric fields, without considering the absorption effect. (d) and (e) present those for Δ ε = 8.6 × 10 3 (corresponding to 5000 ppm of benzene). [(c), (f)] Zoom-in at the defect region in the case of the electric field distribution.

Fig. 8
Fig. 8

(a) Transmittivity as a function of the resonance wavelength, where a slight red shift is obtained by decreasing Δ ε . (b) Transmittivity through the cavity as a function of Δ ε . Δ ε = 8.6 × 10 6 corresponds to the porphyrin layer without benzene. Δ ε = 8.6 × 10 5 corresponds to a presence of 50 ppm of benzene and Δ ε = 8.6 × 10 4 to a presence of 500 ppm of benzene.

Fig. 9
Fig. 9

(a) Refraction index and (b) extinction coefficient variation function of the weighting factor Δ ε calculated from Eqs. (4, 5), respectively.

Tables (1)

Tables Icon

Table 1 Parameters for the Lorentz Dispersion Model Described in Eq. (3)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ ( 0 ) = f 1 ( 1 ε a 1 ε c ) + f 2 ( 1 ε c 1 ε b ) + 1 ε b ,
κ ( G ) = 2 f 1 ( 1 ε a 1 ε c ) ( J 1 ( G R ) G R ) + 2 f 2 ( 1 ε c 1 ε b ) ( J 1 ( G ( R + d ) ) G ( R + d ) ) ,
ε L ( ω ) = ε Δ ε Ω L 2 ( ω 2 Ω L 2 ) + ı Γ L ω ,
n = 1 2 ( ε + ε 2 + Δ ε 2 Ω c 2 Γ L 2 ) ,
κ = 1 2 ( ε + ε 2 + Δ ε 2 Ω c 2 Γ L 2 ) .

Metrics