Abstract

Mode field patterns and light emissions of novel symmetric half-spiral microcavities (SHSMs) are investigated by the two-dimensional (2-D) finite-difference time domain (FDTD) method. The calculation results show that an SHSM can support high-quality (Q) (Q>104) distorted whispering-gallery modes with directional emissions. Moreover, artificial controls on the Q factor and emission directionality are realized in the coupled size-mismatched SHSMs, and unidirectional emission from the coupled cavity structure with a divergence of 19° is achieved.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  2. S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
    [CrossRef]
  3. M. Cai, O. Painter, and K. J. Vahala, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430-1432 (2000).
    [CrossRef]
  4. J. U. Nockel and A. D. Stone, “Ray and wave chaos in asymmetric resonant cavities,” Nature 385, 45-47 (1997).
    [CrossRef]
  5. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923-934 (2004).
    [CrossRef]
  6. S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).
    [CrossRef]
  7. G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
    [CrossRef]
  8. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
    [CrossRef]
  9. T. Ben-Messaoud and J. Zyss, “Unidirectional laser emission from polymer-based spiral microdisks,” Appl. Phys. Lett. 86, 241110 (2005).
    [CrossRef]
  10. J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
    [CrossRef] [PubMed]
  11. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
    [CrossRef]
  12. Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
    [CrossRef]
  13. S. V. Boriskina, “Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 32, 1557-1559 (2007).
    [CrossRef] [PubMed]
  14. X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett. 93, 081105 (2008).
    [CrossRef]
  15. FullWAVE, Rsoft Inc. Research Software, http://www.rsoftinc.com.
  16. R. J. Lang and A. Yariv, “Laterally coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 23, 395-400 (1987).
    [CrossRef]

2009 (2)

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

2008 (2)

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett. 93, 081105 (2008).
[CrossRef]

2007 (1)

2006 (1)

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).
[CrossRef]

2005 (1)

T. Ben-Messaoud and J. Zyss, “Unidirectional laser emission from polymer-based spiral microdisks,” Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

2004 (2)

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923-934 (2004).
[CrossRef]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

2003 (3)

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
[CrossRef]

2000 (1)

1997 (1)

J. U. Nockel and A. D. Stone, “Ray and wave chaos in asymmetric resonant cavities,” Nature 385, 45-47 (1997).
[CrossRef]

1987 (1)

R. J. Lang and A. Yariv, “Laterally coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 23, 395-400 (1987).
[CrossRef]

Belkin, M. A.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Ben-Messaoud, T.

T. Ben-Messaoud and J. Zyss, “Unidirectional laser emission from polymer-based spiral microdisks,” Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

Boriskina, S. V.

Cai, M.

Cao, H.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

Capasso, F.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Chang, R. K.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923-934 (2004).
[CrossRef]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Chern, G. D.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Choi, S. J.

S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
[CrossRef]

S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
[CrossRef]

Dapkus, P. D.

S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
[CrossRef]

Diehl, L.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Djordjev, K.

S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
[CrossRef]

Edamura, T.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Fang, W.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

Harayama, T.

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).
[CrossRef]

Hentschel, M.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

Ho, S.-T.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

Johnson, N. M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Kan, H.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Kneissl, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Lang, R. J.

R. J. Lang and A. Yariv, “Laterally coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 23, 395-400 (1987).
[CrossRef]

Li, H.

X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett. 93, 081105 (2008).
[CrossRef]

Liu, B.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

Liu, L.

X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett. 93, 081105 (2008).
[CrossRef]

Miyashita, N.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

Nockel, J. U.

J. U. Nockel and A. D. Stone, “Ray and wave chaos in asymmetric resonant cavities,” Nature 385, 45-47 (1997).
[CrossRef]

Painter, O.

Pflügl, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Rex, N. B.

Schwefel, H. G. L.

Shinohara, S.

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).
[CrossRef]

Solomon, G. S.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

Song, Q.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

Stone, A. D.

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).
[CrossRef]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923-934 (2004).
[CrossRef]

J. U. Nockel and A. D. Stone, “Ray and wave chaos in asymmetric resonant cavities,” Nature 385, 45-47 (1997).
[CrossRef]

Stone, A. Douglas

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Teepe, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

Tureci, H. E.

Türeci, H. E.

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).
[CrossRef]

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Vahala, K. J.

Wang, Q. J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Wiersig, J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

Wu, X.

X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett. 93, 081105 (2008).
[CrossRef]

Xu, L.

X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett. 93, 081105 (2008).
[CrossRef]

Yamanishi, M.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Yan, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Yariv, A.

R. J. Lang and A. Yariv, “Laterally coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 23, 395-400 (1987).
[CrossRef]

Yu, N.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Zyss, J.

T. Ben-Messaoud and J. Zyss, “Unidirectional laser emission from polymer-based spiral microdisks,” Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

G. D. Chern, H. E. Türeci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

T. Ben-Messaoud and J. Zyss, “Unidirectional laser emission from polymer-based spiral microdisks,” Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett. 93, 081105 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. J. Lang and A. Yariv, “Laterally coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 23, 395-400 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

J. U. Nockel and A. D. Stone, “Ray and wave chaos in asymmetric resonant cavities,” Nature 385, 45-47 (1997).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).
[CrossRef]

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
[CrossRef]

Phys. Rev. Lett. (1)

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

Other (1)

FullWAVE, Rsoft Inc. Research Software, http://www.rsoftinc.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (a) a symmetric half-spiral microcavity (SHSM) and (b) side-coupled SHSMs.

Fig. 2
Fig. 2

(a) Resonance wavelengths (triangle) and Q factors (square) of TM 11 , 1 modes as a function of the deformation ε. The solid and open squares and triangles correspond to the even and odd modes, respectively. The upper inset shows the far-field patterns of the even mode at ε = 0.1 and 0.44, and the one below zooms in on the mode splitting ( 2 nm ) for ε = 0.5 (b) Near- and far-field patterns of even ( λ = 1552.27 nm ) and odd ( λ = 1554.01 nm ) TM 11 , 1 modes for ε = 0.44 . The curves correspond to even and odd modes, respectively.

Fig. 3
Fig. 3

(a) Q factors of TM 11 , 1 supermodes versus the gap between two cavities for ε = 0.44 , R 1 = 1.0 μ m , and R 2 = 1.1 μ m . (b) Near- and far-field patterns for even and odd TM 11 , 1 modes with gap = 0.2 μ m . The curves correspond to even and odd modes, respectively. The short dashed lines in (a) correspond to the Q factors of a single cavity with R = 1.0 μ m .

Fig. 4
Fig. 4

(a) Q factors of TM 12 , 1 modes versus the gap between two cavities for ε = 0.44 , R 1 = 1.0 μ m , and R 2 = 1.1 μ m . (b) Near- and far-field patterns for even ( λ = 1440.50 nm ) and odd ( λ = 1442.01 nm ) TM 12 , 1 modes with gap = 0.3 μ m . The curves correspond to even and odd modes, respectively. The short dashed lines in (a) correspond to the Q factors of a single cavity with R = 1.0 μ m . The inset in the far-field pattern shows that of the odd and even TM 12 , 1 modes in a single cavity with R = 1.0 μ m .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ r ( φ ) = R ( 1 + ε 360 φ ) 0 ° φ 180 ° r ( φ ) = R ( 1 + ε ε 360 φ ) 180 ° < φ 360 ° } ,

Metrics